Skip to main content
Log in

The distribution of the transposable elementBari-1 in theDrosophila melanogaster andDrosophila simulans genomes

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The distribution of the transposable elementBari-1 inD. melanogaster andD. simulans was examined by Southern blot analysis and byin situ hybridization in a large number of strains of different geographical origins and established at different times.Bari-1 copies mostly homogeneous in size and physical map are detected in all strains tested. Both inD. melanogaster and inD. simulans a relatively high level of intraspecific insertion site polymorphism is detectable, suggesting that in both speciesBari-1 is or has been actively transposing. The main difference between the two sibling species is the presence of a large tadem array of the element in a well-defined heterochromatic location of theD. melanogaster genome, whereas such a cluster is absent inD. simulans. The presence ofBari-1 elements with apparently identical physical maps in allD. melanogaster andD. simulans strains examined suggests thatBari-1 is not a recent introduction in the genome of themelanogaster complex. Structural analysis reveals unusual features that distinguish it from other inverted repeat transposons, whereas many aspects are similar to the widely distributedTc1 element ofC. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashburner, M., 1989.Drosophila: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Anxolabéhère, D., M.G. Kidwell & G. Périquet, 1988. Molecular characteristics of diverse populations are consistent with a recent invasion ofDrosophila melanogaster by mobile P elements. Mol. Biol. Evol. 5:252–269.

    PubMed  Google Scholar 

  • Boussy, I.A. & S.B. Daniels, 1991. Hobo transposable elements inDrosophila melanogaster andD. simulans. Genet. Res. Camb. 58:27–34.

    Google Scholar 

  • Brezinsky, L., G.V.L. Wang, T. Humphreys & J. Hunt, 1990. The transposable element Uhu from HawaiianDrosophila-member of the widely dispersed class of Tc1-like transposons. Nucleic Acids Res. 18:2053–59.

    PubMed  Google Scholar 

  • Caizzi, R., C. Caggese & S. Pimpinelli, 1993. Bari-1, a new transposon-like family inDrosophila melanogaster with a unique heterochromatic organization. Genetics 133:335–345.

    PubMed  Google Scholar 

  • Calvi, B.R., T.J. Hong, S.D. Findley & W.M. Gelbart, 1991. Evidence for a common evolutionary origin of inverted repeat transposon inDrosophila and plants: hobo, Activator, and Tam3. Cell 68:465–471.

    Google Scholar 

  • Capy, P., D. Anxolabéhère & T. Langin, 1994. The strange phylogenies of transposable elements: are horizontal transfers the only explanation? Trends in Genetics 10:7–12.

    PubMed  Google Scholar 

  • Cariou, M. L., 1987. Biochemical phylogeny of the eight species in theDrosophila melanogaster species subgroup, includingD. sechellia andD. orena. Genet. Res. 50:181–185.

    PubMed  Google Scholar 

  • Cohn, V.H., M.A. Thompson & G.P. Moore, 1984. Nucleotide sequence comparison of the Adh gene in three drosophilids. J. Mol. Evol. 20:31–37.

    PubMed  Google Scholar 

  • Collins, J., E. Forbes & P. Anderson, 1939. The Tc3 family of transposable genetic elements inCaenorhabditis elegans. Genetics 121:47–55.

    Google Scholar 

  • Crozatier, M., C. Vaury, I. Busseau, A. Pélisson & A. Bucheton, 1988. Structure and genomic organization of I elements involved in I-R hybrid dysgenesis inDrosophila melanogaster. Nucleic Acids Res. 16:9199–9213.

    PubMed  Google Scholar 

  • Daniels, S.B., A. Chovnick & I.A. Boussy, 1990. Distribution of hobo transposable elements in the genusDrosophila. Mol. Biol. Evol. 7:589–606.

    PubMed  Google Scholar 

  • Daniels, S.B., K.R. Peterson, L.D. Strausbaugh, M.G. Kidwell & A. Chovnick, 1990. Evidence for horizontal transmission of the P transposable element betweenDrosophila species. Genetics 124:339–355.

    PubMed  Google Scholar 

  • Danilevskaya, O.N., D.A. Petrov, M.N. Pavlova, A. Koga, E.V. Kurenova & D.L. Hartl, 1992. A repetitive DNA element, associated with telomeric sequences inDrosophila melanogaster, contains open reading frames. Chromosoma 102:32–40.

    PubMed  Google Scholar 

  • Di Nocera, P.P., F. Graziani & G. Lavorgna, 1986. Genomic and structural organization ofD. melanogaster G elements. Nucleic Acids Res. 14:675–691.

    PubMed  Google Scholar 

  • Emmons, S.W., L. Yesner, K.S. Ruan & D. Katzenberg, 1983. Evidence for a transposon inCaenorhabditis elegans. Cell 32:55–65.

    PubMed  Google Scholar 

  • Feinberg, A.P. & B. Vogelstein, 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anl. Biochem. 132:6–13.

    Google Scholar 

  • Finnegan, D.J. & D.H. Fawcett, 1986. Transposable elements inDrosophila melanogaster. In: N. Maclean (ed) Oxford surveys on eukaryotic genes, vol 3, pp 1–62.

  • Finnegan, D.J., 1989. Eukaryotic transposable elements and genome evolution. Trends in Genetics 5:103–107.

    PubMed  Google Scholar 

  • Franz, G. & C. Savakis, 1991. Minos, a new transposable element fromDrosophila hydei, is a member of the Tc1-like family of transposon. Nucleic Acids Res. 19:6646.

    PubMed  Google Scholar 

  • Ganetzky, B., 1977. On the component of segregation distortion inDrosophila melanogaster. Genetics 86:321–355.

    PubMed  Google Scholar 

  • Gerasimova, T., L. Mizrokhi & G. Georgiev, 1984. Transposition bursts in genetically unstableDrosophila melanogaster. Nature 309:714–716.

    Google Scholar 

  • Heierhorst, J., K. Lederis & D. Richter, 1992. Presence of a member of the Tc1-like transposon family from nematode andDrosophila within the vasotocin gene of a primitive vertebrate, and the Pacific hagfishEptatretus stouti. Proc. Natl. Acad. Sci. USA 89: 6798–6802.

    PubMed  Google Scholar 

  • Henikoff, S., 1992. Detection ofCaenorhabditis transposon homologs in diverse organisms. New Biol. 4:382–388.

    PubMed  Google Scholar 

  • Henikoff, S. & R.H.A. Plasterk, 1988. Related transposon inC. elegans andD. melanogaster. Nucleic Acids Res. 16:6234.

    PubMed  Google Scholar 

  • Jacobson, J.W., M.M. Medhora & D.L. Hartl, 1986. Molecular structure of a somatically unstable transposable element inDrosophila. Proc. Natl. Acad. Sci. USA 83:8684–8688.

    PubMed  Google Scholar 

  • Jakubczak, J.L., Y. Xiong & T.H. Eickbush, 1990. Type I (R1) and Type II (R2) ribosomal DNA insertions ofDrosophila melanogaster are retrotransposable elements closely related to those ofBombyx mori. J. Mol. Biol. 212:37–52.

    PubMed  Google Scholar 

  • Karess, R.E. & G.M. Rubin, 1984. Analysis of P transposable element functions inDrosophila. Cell 38:135–146.

    PubMed  Google Scholar 

  • Kidwell, M.G., 1983. Evolution of hybrid dysgenesis determinants inDrosophila melanogaster. Proc. Natl. Acad. Sci. USA 80: 1655–1659.

    PubMed  Google Scholar 

  • Kidwell, M.G., 1992. Horizontal transfer. Curr. Opin. Genet. Develop. 2:868–873.

    Google Scholar 

  • Kim, A., C. Terzian, P. Santamaria, A. Pelisson, N. Prudhomme & A. Bucheton, 1994. Retroviruses in Invertebrates — The Gypsy retrotransposon is apparently an infectious retrovirus ofDrosophila melanogaster. Proc. Nat. Acad. Sci. USA 91:1285–1289.

    PubMed  Google Scholar 

  • Lachaise, D., M.L. Cariou, J.R. David, F. Lemeunier, L. Tsacas & M. Ashburner, 1988. Historical biogeography of theDrosophila melanogaster species subgroup. Evol. Biol. 22:159–225.

    Google Scholar 

  • Lankenau, D-H., P. Huijser, E. Jansen, K. Miedema & W. Hennig, 1990. DNA sequence comparison of micropia transposable elements fromDrosophila hydei andDrosophila melanogaster. Chromosoma 99:111–117.

    PubMed  Google Scholar 

  • Lemeunier, F., J.R. David, L. Tsacas & M. Ashburner, 1986. Themelanogaster species group, pp 147–256. The Genetics and Biology ofDrosophila, Vol 3e, edited by M. Ashburner & H.L. Carson, Academic Press, London.

    Google Scholar 

  • MacDonald, J.F., 1993. Evolution and consequences of transposable elements. Curr. Opin. Genet. Develop. 3:855–864.

    Google Scholar 

  • Maniatis, T., E.F. Fritsch & J. Sambrook, 1982. Molecular cloning: A Laboratory Manual. Cold Spring Harbor Laboratory. Cold Spring Harbor.

    Google Scholar 

  • Maruyama, K. & D.L. Hartl, 1991a. Evidence for interspecific transfer of the transposable element mariner betweenDrosophila andZaprionus. J. Mol. Evol. 33:514–524.

    PubMed  Google Scholar 

  • Maruyama, K. & D.L. Hartl, 1991b. Evolution of the transposable element mariner inDrosophila species. Genetics 128:319–329.

    PubMed  Google Scholar 

  • Miklos, G.L.G., M.T. Yamamoto, J. Davies & V. Pirrotta, 1988. Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the beta-heterochromatin ofDrosophila melanogaster. Proc. Natl. Acad. Sci. USA 85: 2051–2055.

    PubMed  Google Scholar 

  • Mizrokhi, L.J. & A.M. Mazo, 1990. Evidence for horizontal transmission of mobile element jockey between distantDrosophila species. Proc. Natl. Acad. Sci. USA 87:9216–9220.

    PubMed  Google Scholar 

  • Mullins, M.C., D.C. Rio & G.M. Rubin, 1989. Cis-acting DNA sequence requirements for P-element transposition. Genes Dev. 3:729–738.

    PubMed  Google Scholar 

  • O'Hare, K. & G.M. Rubin, 1983. Structures of P transposable elements and their sites of insertion and excision in theDrosophila melanogaster genome. Cell 34:25–35.

    PubMed  Google Scholar 

  • Orgel, L.E. & F.H.C. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284:604–607.

    PubMed  Google Scholar 

  • Pardue, M.L., 1986. In situ hybridization to DNA of chromosomes and nuclei, pp. 11–137. InDrosophila: A Practical Approach, edited by D.B. Roberts, IRL Press, Oxford.

    Google Scholar 

  • Pimpinelli, S. & P. Dimitri, 1989. Cytogenetic analysis of segregation distortion inDrosophila melanogaster: the cytological organization of the Responder (Rsp) locus. Genetics 121:765–772.

    PubMed  Google Scholar 

  • Robertson, H.M., 1993. The mariner transposable element is widespread in insects. Nature 362:241–245.

    PubMed  Google Scholar 

  • Rosenzweig, B., L.W. Liao & D. Hirsh, 1983. Sequence of theC. elegans transposable element Tc1. Nucleic Acids Res. 11: 4201–4209.

    PubMed  Google Scholar 

  • Rubin, G.M. & A.C. Spradling, 1982. Genetic transformation ofDrosophila with transposable element vectors. Science 218: 348–353.

    PubMed  Google Scholar 

  • Simmons, G.M., 1992. Horizontal transfer of hobo transposable elements within theDrosophila melanogaster species complex: Evidence from DNA sequencing. Mol. Biol. Evol. 9:1050–1060.

    PubMed  Google Scholar 

  • Simonelig, M., C. Bazin, A. Pelisson & A. Bucheton, 1988. transposable and nontransposable elements similar to the I factor involved in inducer-reactive (IR) hybrid dysgenesis inDrosophila melanogaster coexist in variousDrosophila species. Proc. Natl. Acad. Sci. USA 85:1141–1145.

    PubMed  Google Scholar 

  • Spradling, A.C. & G.M. Rubin, 1981.Drosophila genome organization: conserved and dynamic aspects. Annu. Rev. Genet. 15: 219–264.

    PubMed  Google Scholar 

  • Stacy, S.N., R.A. Lansman, H.W. Brock & T. Grigliatti, 1986. Distribution and conservation of mobile elements in the genusDrosophila. Mol. Biol. Evol. 6:522–534.

    Google Scholar 

  • Streck, R.D., J.E. MacGaffey & S.K. Beckendorf, 1986. The structure of hobo transposable elements and their insertion sites. EMBO J. 5:3615–3623.

    Google Scholar 

  • Throckmorton, L.H., 1975. The phylogeny, ecology, and geography ofDrosophila, pp 421–469. In Handbook of Genetics, edited by R.C. King, Plenum Press, New York.

    Google Scholar 

  • Vaury, C., A. Bucheton & A. Pelisson, 1989. The β heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma 98:215–224.

    PubMed  Google Scholar 

  • Wu, C.I., T.W. Lyttle, M.L. Wu & G.F. Lin, 1988. Association between a satellite DNA sequence and the Responder (Rsp) of Segregation Distorter inDrosophila melanogaster. Cell 54: 179–189.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caggese, C., Pimpinelli, S., Barsanti, P. et al. The distribution of the transposable elementBari-1 in theDrosophila melanogaster andDrosophila simulans genomes. Genetica 96, 269–283 (1995). https://doi.org/10.1007/BF01439581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01439581

Key words

Navigation