Skip to main content
Log in

Dense gene physical maps of the non-model species Drosophila subobscura

  • Original Article
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The comparative analysis of genetic and physical maps as well as of whole genome sequences had revealed that in the Drosophila genus, most structural rearrangements occurred within chromosomal elements as a result of paracentric inversions. Genome sequence comparison would seem the best method to estimate rates of chromosomal evolution, but the high-quality reference genomes required for this endeavor are still scanty. Here, we have obtained dense physical maps for Muller elements A, C, and E of Drosophila subobscura, a species with an extensively studied rich and adaptive chromosomal polymorphism. These maps are based on 462 markers: 115, 236, and 111 markers for elements A, C, and E, respectively. The availability of these dense maps will facilitate genome assembly and will thus greatly contribute to obtaining a good reference genome, which is a required step for D. subobscura to attain the model species status. The comparative analysis of these physical maps and those obtained from the D. pseudoobscura and D. melanogaster genomes allowed us to infer the number of fixed inversions and chromosomal evolutionary rates for each pairwise comparison. For all three elements, rates inferred from the more closely related species were higher than those inferred from the more distantly related species, which together with results of relative-rate tests point to an acceleration in the D. subobscura lineage at least for elements A and E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAC :

Bacteria artificial chromosome

BP :

Breakpoints

BSI :

Barcelona Subobscura Initiative

ch cu :

cherry curled

Ma :

Million years

Mb :

Megabases

P1 :

P1-derived artificial chromosome

YAC :

Yeast artificial chromosome

References

  • Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science (80- ) 287:2185–2195. doi:10.1126/science.287.5461.2185

    Article  Google Scholar 

  • Balanyà J, Oller JM, Huey RB et al (2006) Global genetic change tracks global climate warming in Drosophila subobscura. Science (80-) 313:1773–1775. doi:10.1126/science.1131002

    Article  Google Scholar 

  • Beckenbach AT, Prevosti A (1986) Colonization of North America by the European species, Drosophila subobscura and D. ambigua. Am Midl Nat 115:10–18. doi:10.2307/2425832

    Article  Google Scholar 

  • Bhutkar A, Russo SM, Smith TF, Gelbart WM (2007) Genome-scale analysis of positionally relocated genes. Genome Res 17:1880–1887. doi:10.1101/gr.7062307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhutkar A, Schaeffer SW, Russo SM et al (2008) Chromosomal rearrangement inferred from comparisons of 12 Drosophila genomes. Genetics 179:1657–1680. doi:10.1534/genetics.107.086108

    Article  PubMed  PubMed Central  Google Scholar 

  • Cirera S, Martín-Campos JM, Segarra C, Aguadé M (1995) Molecular characterization of the breakpoints of an inversion fixed between Drosophila melanogaster and D. subobscura. Genetics 139:321–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark AG, Eisen MB, Smith DR et al (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Article  PubMed  Google Scholar 

  • Clark AG, Glanowski S, Nielsen R et al (2003) Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science (80-) 302:1960–LP-1963

    Article  CAS  Google Scholar 

  • Garcia CF, Delprat A, Ruiz A, Valente VLS (2015) Reassignment of Drosophila willistoni genome scaffolds to chromosome II arms. G3 Gene Genomes Genet 5:2559–2566. doi:10.1534/g3.115.021311

    Google Scholar 

  • González J, Nefedov M, Bosdet I et al (2005) A BAC-based physical map of the Drosophila buzzatii genome. Genome Res 15:885–892. doi:10.1101/gr.3263105

    Article  PubMed  PubMed Central  Google Scholar 

  • González J, Ranz JM, Ruiz A (2002) Chromosomal elements evolve at different rates in the Drosophila genome. Genetics 161:1137–1154

    PubMed  PubMed Central  Google Scholar 

  • Hartl DL, Nurminsky DI, Jones RW, Lozovskaya ER (1994) Genome structure and evolution in Drosophila: applications of the framework P1 map. Proc Natl Acad Sci U S A 91:6824–6829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krimbas CB (1992) The inversion polymorphism of Drosophila subobscura. In: Krimbas CB, Powell JR (eds) Drosophila inversion polymorphism. CRC Press, Boca Ratón, pp 127–220

    Google Scholar 

  • Kunze-Mühl E, Müller E (1958) Weitere Untersuchungen uber die chromosomale Struktur und die natürlichen Strukturtypen von Drosophila subobscura Coll. Chromosoma 9:559–570

    Article  PubMed  Google Scholar 

  • Llopart A, Aguadé M (2000) Nucleotide polymorphism at the RpII215 Gene in Drosophila subobscura: weak selection on synonymous mutations. Genetics 155:1245–1252

  • McPherson JD, Marra M, Hillier L et al (2001) A physical map of the human genome. Nature 409:934–941. doi:10.1038/35057157

    Article  CAS  PubMed  Google Scholar 

  • Mestres F, Abad L, Sabater-Muñoz B et al (2004) Colonization of America by Drosophila subobscura: association between Odh gene haplotypes, lethal genes and chromosomal arrangements. Genes Genet Syst 79:233–244. doi:10.1266/ggs.79.233

    Article  CAS  PubMed  Google Scholar 

  • Moltó MD, De Frutos R, Martinez-Sebastián MJ (1987) The banding pattern of polytene chromosomes of Drosophila guanche compared with that of D. subobscura. Genetica 75:55–70. doi:10.1007/BF00056033

    Article  PubMed  Google Scholar 

  • Montgomery E, Charlesworth B, Langley CH (1987) A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet Res 49:31–41

    Article  CAS  PubMed  Google Scholar 

  • Muller HJ (1940) Bearings of the “Drosophila” work on systematics. In: Huxley J (ed) The New Systematics. pp 185–268

  • Munté A, Rozas J, Aguadé M, Segarra C (2005) Chromosomal inversion polymorphism leads to extensive genetic structure: a multilocus survey in Drosophila subobscura. Genetics 169:1573–1581. doi:10.1534/genetics.104.032748

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadeau JH, Taylor BA (1984) Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci U S A 81:814–818. doi:10.1073/pnas.81.3.814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Sabaté À, Aguadé M, Segarra C (1999) The relationship between allozyme and chromosomal polymorphism inferred from nucleotide variation at the Acph-1 gene region of Drosophila subobscura. Genetics 153:871–889

    PubMed  PubMed Central  Google Scholar 

  • Nóbrega C, Khadem M, Aguadé M, Segarra C (2008) Genetic exchange versus genetic differentiation in a medium-sized inversion of Drosophila: the A2/Ast arrangements of Drosophila subobscura. Mol Biol Evol 25:1534–1543. doi:10.1093/molbev/msn100

    Article  PubMed  Google Scholar 

  • Obbard DJ, Maclennan J, Kim K et al (2012) Estimating divergence dates and substitution rates in the Drosophila phylogeny. Mol Biol Evol 29:3459–3473. doi:10.1093/molbev/mss150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orengo DJ, Prevosti A (1996) Temporal changes in chromosomal polymorphism of Drosophila subobscura related to climatic changes. Evolution (N Y) 50:1346–1350. doi:10.2307/2410676

    Google Scholar 

  • Orengo DJ, Puerma E, Aguadé M (2016) Monitoring chromosomal polymorphism in Drosophila subobscura over 40 years. Entomol Sci:215–221. doi:10.1111/ens.12189

  • Orengo DJ, Puerma E, Papaceit M et al (2015) A molecular perspective on a complex polymorphic inversion system with cytological evidence of multiply reused breakpoints. Heredity (Edinb) 114:610–618. doi:10.1038/hdy.2015.4

    Article  CAS  Google Scholar 

  • Papaceit M, Aguadé M, Segarra C (2006) Chromosomal evolution of elements B and C in the Sophophora subgenus of Drosophila: evolutionary rate and polymorphism. Evolution 60:768–781. doi:10.1111/j.0014-3820.2006.tb01155.x

    Article  CAS  PubMed  Google Scholar 

  • Papaceit M, Juan E (1993) Chromosomal homologies between Drosophila lebanonensis and D. melanogaster determined by in situ hybridization. Chromosoma 102:361–368

    Article  CAS  PubMed  Google Scholar 

  • Papaceit M, Segarra C, Aguadé M (2013) Structure and population genetics of the breakpoints of a polymorphic inversion in Drosophila subobscura. Evolution (N Y) 67:66–79. doi:10.1111/j.1558-5646.2012.01731.x

    CAS  Google Scholar 

  • Pegueroles C, Aquadro CF, Mestres F, Pascual M (2013) Gene flow and gene flux shape evolutionary patterns of variation in Drosophila subobscura. Heredity (Edinb) 110:520–529. doi:10.1038/hdy.2012.118

    Article  CAS  Google Scholar 

  • Pegueroles C, Ordóñez V, Mestres F, Pascual M (2010) Recombination and selection in the maintenance of the adaptive value of inversions. J Evol Biol 23:2709–2717. doi:10.1111/j.1420-9101.2010.02136.x

    Article  CAS  PubMed  Google Scholar 

  • Pevzner P, Tesler G (2003) Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res 13:37–45. doi:10.1101/gr.757503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prevosti A, Ribó G, Serra L et al (1988) Colonization of America by Drosophila subobscura: experiment in natural populations that supports the adaptive role of chromosomal-inversion polymorphism. Proc Natl Acad Sci U S A 85:5597–5600. doi:10.1073/pnas.85.15.5597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prevosti A, Serra L, Ribó G et al (1985) The colonization of Drosophila subobscura in Chile. II. Clines in the chromosomal arrangements. Evolution (N Y) 39:838–844. doi:10.2307/2408683

    Google Scholar 

  • Puerma E, Orengo DJ, Aguadé M (2016a) The origin of chromosomal inversions as a source of segmental duplications in the Sophophora subgenus of Drosophila. Sci Rep 6:30715. doi:10.1038/srep30715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puerma E, Orengo DJ, Aguadé M (2016b) Multiple and diverse structural changes affect the breakpoint regions of polymorphic inversions across the Drosophila genus. Sci Rep 6:36248. doi:10.1038/srep36248

  • Puerma E, Orengo DJ, Salguero D et al (2014) Characterization of the breakpoints of a polymorphic inversion complex detects strict and broad breakpoint reuse at the molecular level. Mol Biol Evol 31:2331–2341. doi:10.1093/molbev/msu177

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Onsins SE, Segarra C, Rozas J, Aguadé M (1998) Molecular and chromosomal phylogeny in the obscura group of Drosophila inferred from sequences of the rp49 gene region. Mol Phylogenet Evol 9:33–41. doi:10.1006/mpev.1997.0438

    Article  CAS  PubMed  Google Scholar 

  • Ranz JM, Maurin D, Chan YS et al (2007) Principles of genome evolution in the Drosophila melanogaster species group. PLoS Biol 5:e152. doi:10.1371/journal.pbio.0050152

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranz JM, Segarra C, Ruiz A (1997) Chromosomal homology and molecular organization of Muller’s elements D and E in the Drosophila repleta species group. Genetics 145:281–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Trelles F, Tarrío R, Santos M (2013) Genome-wide evolutionary response to a heat wave in Drosophila. Biol Lett 9:20130228. doi:10.1098/rsbl.2013.0228

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaeffer SW, Bhutkar A, Mcallister BF et al (2008) Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics 179:1601–1655. doi:10.1534/genetics.107.086074

    Article  PubMed  PubMed Central  Google Scholar 

  • Segarra C, Aguadé M (1992) Molecular organization of the X chromosome in different species of the obscura group of Drosophila. Genetics 130:513–521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segarra C, Lozovskaya ER, Ribó G et al (1995) P1 clones from Drosophila melanogaster as markers to study the chromosomal evolution of Muller’s A element in two species of the obscura group of Drosophila. Chromosoma 104:129–136. doi:10.1007/BF00347695

    CAS  PubMed  Google Scholar 

  • Segarra C, Ribó G, Aguadé M (1996) Differentiation of Muller’s chromosomal elements D and E in the obscura group of Drosophila. Genetics 144:139–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinemann M (1982) Analysis of chromosomal homologies between two species of the subgenus Sophophora: D. miranda and D. melanogaster using cloned DNA segments. Chromosoma 87:77–88. doi:10.1007/BF00333510

    Article  CAS  PubMed  Google Scholar 

  • Steinemann M, Pinsker W, Sperlich D (1984) Chromosome homologies within the Drosophila obscura group probed by in situ hybridization. Chromosoma 91:46–53. doi:10.1007/BF00286484

    Article  Google Scholar 

  • Sturtevant AH, Novitski E (1941) The homologies of the chromosome elements in the genus Drosophila. Genetics 26:517–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sturtevant AH, Tan CC (1937) The comparative genetics of Drosophila pseudoobscura and Drosophila melanogaster. J Genet 34:415–432

    Article  Google Scholar 

  • Tamura K, Subramanian S, Kumar S (2004) Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol 21:36–44. doi:10.1093/molbev/msg236

    Article  CAS  PubMed  Google Scholar 

  • Tesler G (2002) GRIMM: genome rearrangements web server. Bioinformatics 18:492–493. doi:10.1093/bioinformatics/18.3.492

    Article  CAS  PubMed  Google Scholar 

  • Throckmorton LH (1975) The phylogeny, ecology and geography of Drosophila. In: King RC (ed) Handbook of genetics. Plenum Press, New York, pp 421–469

    Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science (80-) 291:1304–1351. doi:10.1126/science.1058040

    Article  CAS  Google Scholar 

  • von Grotthuss M, Ashburner M, Ranz JM (2010) Fragile regions and not functional constraints predominate in shaping gene organization in the genus Drosophila. Genome Res 20:1084–1096. doi:10.1101/gr.103713.109

    Article  Google Scholar 

  • Zivanovic G, Arenas C, Mestres F (2014) Inversion polymorphism in two Serbian natural populations of Drosophila subobscura: analysis of long-term changes. Russ J Genet 50:638–644. doi:10.1134/s1022795414060155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank David Salguero for his excellent technical assistance. We also thank Servei de Genòmica, Serveis Cientifico-Tècnics, Universitat de Barcelona, for automated sequencing facilities. This paper was prepared with full knowledge and support of the Barcelona Subobscura Initiative (BSI). This work was supported by grants BFU2012-35168 and BFU2014-63732 from Ministerio de Economía y Competitividad, Spain, and 2014SGR-1055 from Comissió Interdepartamental de Recerca i Innovació Tecnològica, Generalitat de Catalunya, Spain to MA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montserrat Aguadé.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Fengtang Yang

Dorcas J. Orengo and Eva Puerma contributed equally to this work

Electronic supplementary material

ESM 1

(PDF 764 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orengo, D.J., Puerma, E., Papaceit, M. et al. Dense gene physical maps of the non-model species Drosophila subobscura . Chromosome Res 25, 145–154 (2017). https://doi.org/10.1007/s10577-016-9549-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-016-9549-1

Keywords

Navigation