Skip to main content
Log in

Thermodynamics of acrylic esters containing binary liquid mixtures. I. Excess volumes and isentropic compressibilities of alkyl methacrylates +n-hexane, +n-heptane, + carbon tetrachloride, + chlorobenzene, ando-dichlorobenzene at 303.15 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Excess volumes and isentropic compressibilities of 15 binary liquid mixtures containing methyl methacrylate (MMA). ethyl methacrylate (EMA), and butyl methacrylate (BM) andn-Hexane,n-heptane, carbon tetrachloride chlorobenzene ando-dichlorobenzene are derived from the measured densities and speeds of sound at 303.15 K. The dependence of the excess volumes and the isentropic compressibilities both on the alkyl chain length and on the nature of the solvent shots the dominance of dispersing interactions in the mixtures of aliphatic hydrocarbons and specific interactions im the chlorinated solvent mixtures. The speeds of sound of binary mixtures of MMA were found to be reasonably predicted by free length and collision factor theories. An attempt is also made to estimate the individual contributions of interactional. free volume andP * effects to the overall excess volumes of binary mixtures containing MMA. The results indicate that the three factors are equally responsible for the observed values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. F. Grolier, D. Ballet and A. Viallard,J. Chem. Thermodyn. 6:895 (1974).

    Google Scholar 

  2. O. Dusart, J. P. E. Drolier, and A. Villard,Bull. Soc. Chim. Fr. 7:587 (1977).

    Google Scholar 

  3. L. Jimenez, L. Romani, M. I. Paz Andrade, G. Roux-Desgranges, and J. P. L. Grolier,J. Soln. Chem. 15: 379 (1986).

    Google Scholar 

  4. J. Ortega,Ber. Bunsenges. Phys. Chem. 92:1146 (1988).

    Google Scholar 

  5. J. Fernandez, L. Pias, J. Ortega and M. I. Paz Andrade,J. Chem. Thermodyn. 22:263 (1990).

    Google Scholar 

  6. J. Ortega,J. Chem. Thermodyn 23:327 (1991).

    Google Scholar 

  7. J. Ortega, E. Gonzalez, J.S. Matos and J.L. LegidoJ. Chem. Thermodyn. 24:15 (1992).

    Google Scholar 

  8. J. Ortega,J. Chem. Thermodyn. 24:1121 (1992).

    Google Scholar 

  9. J. Ortega and E. Gonzalez,J. Chem. Thermodyn. 25:495 (1993).

    Google Scholar 

  10. E. Gonzalez, J. Ortega, J. S. Matos, and G. Tardajos,J. Chem. Thermodyn. 25:561 (1993):25:801 (1993):26:41 (1994).

    Google Scholar 

  11. S. L. Oswal and I.N. Patel,Indian J. Chem. 29A:870 (1990).

    Google Scholar 

  12. B. Luo, S. E. M. Hamam, G.C. Benson and B.C.-Y. Lu,J. Chem. Thermodyn. 18:10143 (1986).

    Google Scholar 

  13. B. Luo, S. E. M. Hamam, G. C. Benson and B. C.-Y. LuJ. Chem. Eng. Data 32:81 (1937).

    Google Scholar 

  14. N. V. Sastry and M. M. Raj,Thermochim. Acta 257:39 (1995).

    Google Scholar 

  15. N. V. Sastry and M. M. Raj,Indian J. Chem. 35A:49 (1996).

    Google Scholar 

  16. J. H. Reddick and W. B. Bunger,“Organic Solvents” physical Properties and Methods of Purifications, 3d ed. (Wiley, New York 1970).

    Google Scholar 

  17. H. T. Van and D. Patterson,J. Soln. Chem. 11:793 (1982).

    Google Scholar 

  18. T. M. Letcher and R. C. Halter,J. Soln. Chem. 18:65 (1939).

    Google Scholar 

  19. A. Abe and P. J. Flory,J. Am. Chem. Soc. 87:1338 (1965).

    Google Scholar 

  20. M. T. Ratzsch, E. Richelt and H. Rosner,Z. Phys. Chem. Leipzig 255:933 (1974).

    Google Scholar 

  21. S. L. Oswal, B. M. Patel, H. R. Shah and P. Oswal,Int. J. Thermophys. 15:627 (1994).

    Google Scholar 

  22. J. A. Riddick, W. B. Hunger and T. K. Sakano,Organic Solvents Techniques of Chemistry Vol. 11 (Wiley, New York 1936).

    Google Scholar 

  23. J. Ortega and J. S. Matos,Mater. Chem. Phys. 15:415 (1986).

    Google Scholar 

  24. V.A. Bloomfield and R. K. Dewan,J. Phys. Chem. 75:31 (1975).

    Google Scholar 

  25. J. Zielkiewicz,J. Chem. Thermodyn. 26:959 (1994).

    Google Scholar 

  26. S.S. Joshi, T. Aminabhavi and S.S. Shukla,J. Chem. Eng. Data 35:247 (1990).

    Google Scholar 

  27. J. Nath and A. D. Triphati,J. Chem. Eng. Data 28:263 (1983).

    Google Scholar 

  28. K. S. Reddy,J. Chem. Eng. Data 31:238 (1986).

    Google Scholar 

  29. J. R. Sekar, P. R. Naidu, and W. E. Acree, Jr.,J. Chem. Eng. Data 38:167 (1993).

    Google Scholar 

  30. V.C. Kumar, B. Sreenivasulu and P. R. Naidu,J. Chem. Eng. Data 37:71 (1992).

    Google Scholar 

  31. J. P. Malia,Polymer 3:317 (1962).

    Google Scholar 

  32. J. F. Messerly, G. B. Guthrie, S. S. Todd and H. L. Finke,J. Chem. Eng. Data 12:338 (1967).

    Google Scholar 

  33. H. Kalai, F. Kholer, and P. Svejda,J. Chem. Eng. Data 37:133 (1992).

    Google Scholar 

  34. B. Jacobson,Acta. Chem. Scand. A,8:1485 (1952).

    Google Scholar 

  35. R. Nutsch-KunkesAcoustica 15:383 (1965).

    Google Scholar 

  36. W. Schaffs,Molekularakustich (Springer Verlag, Berlin, 1963), Chaps XI and XII.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sastry, N.V., Dave, P.N. Thermodynamics of acrylic esters containing binary liquid mixtures. I. Excess volumes and isentropic compressibilities of alkyl methacrylates +n-hexane, +n-heptane, + carbon tetrachloride, + chlorobenzene, ando-dichlorobenzene at 303.15 K. Int J Thermophys 17, 1289–1304 (1996). https://doi.org/10.1007/BF01438671

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01438671

Key words

Navigation