Skip to main content

Advertisement

Log in

The Study of Thermodynamic Properties for Cyclohexanone + Alkylbenzenes Binary Mixtures at Temperatures Up to 318.15 K and Normal Pressures

  • Research
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The physico-chemical properties for the pure liquids of cyclohexanone, n-propylbenzene and iso-propylbenzene, as well as their binary mixtures of n-propylbenzene/iso-propylbenzene + cyclohexanone, have been measured at different temperatures in the range of (298.15 to 318.15) K and p = 0.1 MPa. The obtained experimental results were used to calculate the excess and deviation quantities as: excess molar volumes, excess speeds of sound, excess isentropic compressibilities, excess molar isentropic compressibilities, deviations in refractive indices, and excess molar refractions. The experimental density data were used to calculate the partial and apparent volumetric properties. Moreover, from the obtained densities data, the surface tensions and the surface tension deviations for mixtures were predicted. From the experimental refractive index data, the dielectric permittivities and their deviations were evaluated by known equations. In addition, some theoretical (n, ρ) mixing rules (Lorentz–Lorenz, Gladstone–Dale, Arago–Biot, Edwards and Eykman) usually used in predicting the refractive indexes were assessed. These excess and deviation properties have been correlated by the Redlich–Kister type polynomial expression. The parameters of correlation were estimated and their values have been reported at working temperatures. The experimental and calculated results are discussed from the point of view of the molecular interactions between components of mixtures and their structural effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. J.M. Prausnitz, R.N. Lichtenthaler, E.G. De Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd edn. (Prentice Hall, New Jersey, 1998)

    Google Scholar 

  2. D. Dragoescu, J. Chem. Thermodyn. 75, 13–19 (2014)

    Article  Google Scholar 

  3. S. Singh, B.P.S. Sethi, R.C. Katyal, V.K. Rattan, J. Chem. Eng. Data 50, 125–127 (2005)

    Article  Google Scholar 

  4. H.R. Rafiee, S. Ranjbar, F. Poursalman, J. Chem. Thermodyn. 54, 266–271 (2012)

    Article  Google Scholar 

  5. K.P. Chandra Rao, K.S. Reddy, M. Ramakrishna, Fluid Phase Equilib. 41, 303–316 (1988)

    Article  Google Scholar 

  6. D. Dragoescu, J. Mol. Liq. 209, 713–722 (2015)

    Article  Google Scholar 

  7. O. Ciocirlan, M. Teodorescu, D. Dragoescu, O. Iulian, A. Barhala, J. Chem. Eng. Data 55, 968–973 (2010)

    Article  Google Scholar 

  8. J.-T. Chen, W.-C. Chang, J. Chem. Eng. Data 51, 88–92 (2006)

    Article  ADS  Google Scholar 

  9. A.P. Shchemelev, V.S. Samuilov, N.V. Golubeva, O.G. Paddubskii, J. Eng. Phys. Thermophys. 94(2), 509–519 (2021). https://doi.org/10.1007/s10891-021-02322-9

    Article  Google Scholar 

  10. A.P. Shchamialiou, V.S. Samuilov, N.V. Golubeva, O.G. Paddubski, D. Dragoescu, F. Sirbu, Int. J. Thermophys. 43(5), 1–41 (2022). https://doi.org/10.1007/s10765-022-02984-4

    Article  Google Scholar 

  11. J. Zhang, B. Luo, Tianjin Daxue Xuebao 4, 7 (1988)

    Google Scholar 

  12. B. Chawlas, K. Mehtar, V. Jasra, S.K. Suri, Can. J. Chem. 61, 2147–2150 (1983)

    Article  Google Scholar 

  13. D. Wei, M. Li, J. Ma, B. Wang, J. Chem. Thermodyn. 143, 106050 (2020). https://doi.org/10.1016/j.jct.2020.106050

    Article  Google Scholar 

  14. M.I. Aralaguppi, C.V. Jabar, T.M. Aminabhavi, J. Chem. Eng. Data 44, 446–450 (1999)

    Article  Google Scholar 

  15. NIST. http://trc.nist.gov/thermolit/main. Accessed May 2023.

  16. L. De Lorenzi, M. Fermeglia, G. Torriano, J. Chem. Eng. Data 40, 1172–1177 (1995)

    Article  Google Scholar 

  17. S. Singh, V.K. Rattan, S. Kapoor, R. Kumar, A. Rampal, J. Chem. Eng. Data 50, 288–292 (2005)

    Article  Google Scholar 

  18. J.A. Riddick, W.B. Bunger, T.K. Sakano, Techniques of Chemistry, Organic Solvents. Physical Properties and Methods of Purifications, vol. 2 (Wiley, New York, 1986)

    Google Scholar 

  19. M. Teodorescu, C. Secuianu, J. Sol. Chem. 42, 1912–1934 (2013)

    Article  Google Scholar 

  20. S. Fujii, K. Tamura, S. Murakami, J. Chem. Thermodyn. 27, 1319–1328 (1995)

    Article  Google Scholar 

  21. A. Anderko, J. Chem. Thermodyn. 22, 55–60 (1990)

    Article  Google Scholar 

  22. K. Chylinski, J. Gregorowicz, Fluid Phase Equilib. 64, 231–249 (1991)

    Article  Google Scholar 

  23. B. Marongiu, A. Piras, S. Porcedda, E. Tuveri, J. Therm. Anal. Calorim. 90(3), 909–922 (2007)

    Article  Google Scholar 

  24. A.F. Forziati, F.D. Rossini, Physical properties of sixty API-NBS hydrocarbons. J. Res. Natl. Bur. Stand. 43, 473 (1949)

    Article  Google Scholar 

  25. C. Lisa, M. Ungureanu, P.C. Cosmatchi, G. Bolat, Thermochim. Acta 617, 76–82 (2015)

    Article  Google Scholar 

  26. D.R. Lide, CRC Handbook of Chemistry and Physics, 90th edn. (CRC Press/Taylor and Francis, Boca Raton, 2010)

    Google Scholar 

  27. TRC Tables Non-hydrocarbons, Thermodynamic Research Center (Texas A&M University, College Station, 1991).

  28. J.A. Al-Kandary, A.S. Al-Jimaz, A.H.M. Abdul-Latif, J. Chem. Eng. Data 51, 99–103 (2006)

    Article  Google Scholar 

  29. M. Habibullah, K.N. Das, M.A.K. Mallik, N.K.M. Akber Hossain, Phys. Chem. Liq. 44(2), 139–143 (2006)

    Article  Google Scholar 

  30. M.C.S. Subha, S. Brahmaji Rao, J. Chem. Eng. Data 33, 404–406 (1998)

    Article  Google Scholar 

  31. W.-C. Nung, W.-T. Vong, F.-N. Tsai, J. Chem. Eng. Data 40, 598–600 (1995)

    Article  Google Scholar 

  32. F. Sirbu, D. Dragoescu, A. Shchamialiou, T. Khasanshin, J. Chem. Thermodyn. 128, 383–393 (2019)

    Article  Google Scholar 

  33. Y.P. Handa, G.C. Benson, Fluid Phase Equilib. 4, 261–268 (1980)

    Article  Google Scholar 

  34. J.M. Resa, C. Gonzalez, R.G. Concha, M. Iglesias, Phys. Chem. Liq. 42(5), 521–543 (2004)

    Article  Google Scholar 

  35. J.M. Resa, C. Gonzalez, E. Diez, R.G. Concha, M. Iglesias, Korean J. Chem. Eng. 21(5), 1015–1025 (2004)

    Article  Google Scholar 

  36. J. Timmermans, Physico-chemical Constants, vol. 11 (Elsevier, Amsterdam, 1965)

    Google Scholar 

  37. J.M. Resa, M. Iglesias, C. Gonzalez, J. Lanz, J.A.M. de Ilarduya, J. Chem. Thermodyn. 33, 723–732 (2001)

    Article  Google Scholar 

  38. J.M. Resa, C. González, R.G. Concha, M. Iglesias, Phys. Chem. Liq. 42(5), 493–520 (2004)

    Article  Google Scholar 

  39. J.M. Resa, C. González, S. Prieto, E. Díez, M. Iglesias, Korean J. Chem. Eng. 23(1), 93–101 (2006)

    Article  Google Scholar 

  40. L. Morávková, J. Linek, J. Chem. Thermodyn. 35, 1139–1149 (2003)

    Article  Google Scholar 

  41. E. Cepeda, C. Gonzalez, J.M. Resa, C. Ortiz de Salido, J. Chem. Eng. Data 34, 429–431 (1989)

    Article  Google Scholar 

  42. R. Gonzalez-Olmos, M. Iglesias, B.M.R.P. Santos, S. Mattedi, J.M. Goenaga, J.M. Resa, Phys. Chem. Liq. 48(2), 257–271 (2010)

    Article  Google Scholar 

  43. J. George, N.V. Sastry, J. Chem. Eng. Data 48, 977–989 (2003)

    Article  Google Scholar 

  44. M.V. Rathnam, K. Jain, M.S.S. Kumar Rathnam, J. Chem. Eng. Data 55, 1722–2172 (2010)

    Article  Google Scholar 

  45. A. Das et al., TRC Thermodynamic Tables; Thermodynamic Research Center (Texas A&M University, College Station, 1994)

    Google Scholar 

  46. S.K. Suri, J. Chem. Eng. Data 25, 390–393 (1980)

    Article  Google Scholar 

  47. Yu. Zhi-Wu, X.-H. He, R. Zhou, Y. Liu, X.-D. Sun, Fluid Phase Equilib. 164, 209–216 (1999)

    Article  Google Scholar 

  48. D. Dragoescu, F. Sirbu, A. Shchamialiou, T. Khasanshin, J. Mol. Liq. 237, 208–215 (2017)

    Article  Google Scholar 

  49. O. Redlich, A.T. Kister, Ind. Eng. Chem. 40, 345–348 (1948)

    Article  Google Scholar 

  50. R.H. Fowler, Proc. R. Soc. Lond. A 159, 229 (1937)

    Article  ADS  Google Scholar 

  51. S. Sugden, J. Chem. Soc. Trans. 125, 1177 (1924)

    Article  Google Scholar 

  52. B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The Properties of Gases and Liquids, 5th edn. (McGraw Hill, New York, 2001)

    Google Scholar 

  53. C.L. Yaws, Thermophysical Properties of Chemical and Hydrocarbons (William Andrew Inc., Beaumont, 2008)

    Google Scholar 

  54. A.I. Vogel, Five-membered and six-membered carbon rings. J. Chem. Soc. 1, 1323–1338 (1938)

    Article  Google Scholar 

  55. R.E. Donaldson, O. Quayle, J. Am. Chem. Soc. 72, 35–36 (1950)

    Article  Google Scholar 

  56. J.J. Jasper, J. Phys. Chem. Ref. Data 1(4), 841–1009 (1972)

    Article  ADS  Google Scholar 

  57. G. Benson, O. Kiyohara, J. Chem. Thermodyn. 11, 1061–1064 (1979)

    Article  Google Scholar 

  58. G. Douheret, M.I. Davis, J.C.R. Reis, Fluid Phase Equilib. 231, 246–249 (2005)

    Article  Google Scholar 

  59. V.K. Sharma, J. Kataria, S. Bhagour, J. Therm. Anal. Calorim. 118, 431–447 (2014)

    Article  Google Scholar 

  60. R. Páramo, M. Zouine, F. Sobrón, C. Casanova, Int. J. Thermophys. 24(1), 185–199 (2003)

    Article  Google Scholar 

  61. P. Brocos, Á. Piñeiro, R. Bravo, A. Amigo, Phys. Chem. Chem. Phys. 5, 550–557 (2003)

    Article  Google Scholar 

  62. P. Baraldi, M.G. Giorgini, D. Manzini, A. Marchetti, L. Tassi, J. Sol. Chem. 31, 873–893 (2002)

    Article  Google Scholar 

  63. H.A. Lorentz, The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat (B.G. Teubmer, Leipzig, 1909)

    MATH  Google Scholar 

  64. M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1983), pp.84–98

    Google Scholar 

  65. S.P. Kamble, Y.S. Sudake, S.S. Patil, P.W. Khirade, S.C. Mehrotra, Int. J. Pharma Bio Sci. 2(2), 297–306 (2011)

    Google Scholar 

  66. M. Gupta, I. Vibhu, J.P. Shukla, Phys. Chem. Liq. 48, 415–427 (2010)

    Article  Google Scholar 

  67. W. Heller, J. Phys. Chem. 69, 1123–1129 (1965)

    Article  Google Scholar 

  68. F. Gladstone, D. Dale, Trans. R. Soc. Lond. 153, 317–343 (1863)

    ADS  Google Scholar 

  69. J.B. Biot, D.F.J. Arago, Memory on the Affinities of Bodies for Light and Particularly on the Strengths of the Different Refractive Gas (Mem. Acad. Fr, Paris, 1806)

    Google Scholar 

  70. M.H. Edwards, Can. J. Phys. 36(7), 884–898 (1958)

    Article  ADS  Google Scholar 

  71. J.F. Eykman, Rec. Trav. Chim. Pays. Bas 14, 185–202 (1895)

    Article  Google Scholar 

  72. A. Tasic, B.D. Djordjevic, D.K. Grozdanic, N. Radojkovic, J. Chem. Eng. Data 37, 310–313 (1992)

    Article  Google Scholar 

  73. M.I. Aralaguppi, T.M. Aminabhavi, R.H. Balundgi, S.S. Joshi, J. Phys. Chem. 95, 5299–5308 (1991)

    Article  Google Scholar 

  74. A. Barhala, D. Dragoescu, A.V. Crisciu, Rev. Roum. Chim. 42, 55–62 (1997)

    Google Scholar 

  75. D. Dragoescu, L. Omota, A. Barhala, O. Iulian, Rev. Roum. Chim. 48(5), 361–369 (2003)

    Google Scholar 

Download references

Acknowledgments

The author expresses gratitude to the Romanian Academy (RA) for financing the research programme “Chemical thermodynamics and kinetics. Quantum chemistry”, in the “Ilie Murgulescu” Institute of Physical Chemistry. The financial support of the EU (ERDF) and Romanian Government, which allowed the acquisition of the research infrastructure under POS-CCE O 2.2.1 Project INFRANANOCHEM—Nr. 19/01.03.2009, is acknowledged. Also, the author expresses many thanks to Prof. Alexander Shchamialiou, from the Belarusian State University of Food and Chemical Technologies, Department of Heat and Refrigerating Engineering, Mogilev, Belarus, for his essential support and helpful discussions.

Funding

No funding received.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable. DD is the sole author of this paper.

Corresponding author

Correspondence to Dana Drăgoescu.

Ethics declarations

Competing Interests

The author declares that there is no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drăgoescu, D. The Study of Thermodynamic Properties for Cyclohexanone + Alkylbenzenes Binary Mixtures at Temperatures Up to 318.15 K and Normal Pressures. Int J Thermophys 44, 144 (2023). https://doi.org/10.1007/s10765-023-03253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03253-8

Keywords

Navigation