Skip to main content
Log in

Intermolecular interactions: basis set and intramolecular correlation effects on semiempirical methods. Application to (C2H2)2, (C2H2)3 and (C2H4)2

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

A detailed study of the intrinsic consistency of the semiempirical method of P. Claverie namely, the effects of the basis set and intramolecular correlation on the multipole distributions of molecular subunits and the influence of the electronic population of each atom in the molecular subunit on its van der Waals radius, is performed on some van der Waals dimers. The validity, limits of this model and the appropriate way to use it is established. In particular, the dependence of the geometry and the interaction energy on the basis set chosen and the intramolecular correlation shows that the multipole distribution involved in the calculation of the electrostatic and polarization terms must be derived from a correlated wave function within an extended basis set. Associated to non local methods for finding stationary points, the method of P. Claverie reproduce reliably the intermolecular geometrical parameters observed for the equilibrium structures and the transition states of the dimer and trimer of acetylene. In addition, a study of the equilibrium structures of the ethylene dimer is presented, the aim of being to clarify the considerable uncertainty in their number and their geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Claverie, P.: Intermolecular interaction: from diatomics to biopolymers, chap. 2, Pullman B. (ed.). New York: Wiley 1978

    Google Scholar 

  2. Langlet, J., Claverie, P., Boeuvre, F.J.C.: Inter. Quantum Chem.20, 299 (1981)

    Google Scholar 

  3. Castella, C., Millie, P., Piuzzi, F., Caillet, J., Langlet, J., Claverie, C., Tramer, A.: J. Am. Chem. Soc.93, 3941 (1989)

    Google Scholar 

  4. Brenner, V., Martrenchard, S., Millie, P., Jouvet, C., Lardeux-Dedonder, C., Solgadi, D.: Chem. Phys.162, 303 (1992)

    Google Scholar 

  5. Berthomieu, D., Brenner, V., Ohanessian, G., Denhez, J.P., Millie, P., Audier, H.E.: J. Am. Chem. Soc.115, 2505 (1993)

    Google Scholar 

  6. Brenner, V., Zehnacker, A., Lahmani, F., Millie, P.: J. Phys. Chem.97, 10570 (1993)

    Google Scholar 

  7. Vigne-Maeder, F., Claverie, P.: J. Chem. Phys.88, 4934 (1988)

    Google Scholar 

  8. Hess, O., Caffarel, M., Langlet, J., Caillet, J., Huiszoon, C., Claverie, P.: Proceedings of the 44th International Meeting of Physical Chemistry on Modeling of Molecular Structures and Properties in Physical Chemistry and Biophysics, Nancy, France, 11–15 September 1989, Rivail, J.P. (ed.). Amsterdam: Elsevier 1990

    Google Scholar 

  9. Allen, C.H., Plyler, E.K.: J. Am. Chem. Soc.80, 2673 (1958)

    Google Scholar 

  10. Tyler, J.K., Sheridan, J.: Proc. Chem. Soc. 119 (1960)

  11. Hehre, W.J., Steward, R.F., Pople, J.A.: J. Chem. Soc.51, 2657 (1969)

    Google Scholar 

  12. Clementi E, Andre, J.M., Andre, M.Cl., Klint, D., Hahn, D.: Acta Phys. Hungarica27, 493 (1969)

    Google Scholar 

  13. Pullman, A., Berthod, H., Gresh, N.: Inter. Quantum Chem. Symp.10, 59 (1976)

    Google Scholar 

  14. Jeung, G.H., Spieegelman, J.P., Daudey, J.P., Malrieu, J.P.: J. Phys. B16, 2675 (1983); Daudey, J.P.: Technical Report: Atelier sur le pseudo-Potentiel, Laboratoire de Physique Quantique, Toulouse (1981)

    Google Scholar 

  15. van Duijneveltdt, F.B.: IBM Research Report, RJ945 (1971)

  16. Dupuis, M., Rys, J., King, W.F.: J. Chem. Phys.65, 111 (1975) (Program 338, QCPE, Chemistry Department, University of Bloomington, IN)

    Google Scholar 

  17. Liotard, A.: Inter. Quantum Chem.44, 723 (1992)

    Google Scholar 

  18. Kirkpatrick, P.: J. Stat. Phys.34, 975 (1984)

    Google Scholar 

  19. Press, W.H., Flannery, B.P., Terkolsky, S.A., Wetterling, W.T.: Numerical recipies, the art of scientific computing. Cambridge: University Press 1986

    Google Scholar 

  20. Handbook of Chemistry and Physics, 62nd. Weast, R.C. (ed.), Florida: CRC Press 1981–1982

    Google Scholar 

  21. Price, S.L., Andrews, J.S., Murray, C.W., Amos, R.D.: J. Am. Chem. Soc.114, 8268 (1992)

    Google Scholar 

  22. Halgren, T.A.: J. Am. Chem. Soc.114, 7827 (1992)

    Google Scholar 

  23. Mayo, S.L., Olafson, B.D., Godard, W.A. III: J. Phys. Chem.94, 8897 (1990)

    Google Scholar 

  24. Lafferty, W.J., Thibault, R.J.: J. Mol. Spectrosc.14, 79 (1964)

    Google Scholar 

  25. Vigne-Maeder, F., Auroux, A.: J. Phys. Chem.94, 316 (1990)

    Google Scholar 

  26. Gresh, N., Claverie, P., Pullman, A.: Inter. Quantum Chem. Quantum Chem. Symp.13, 243 (1979)

    Google Scholar 

  27. Hobza, P., Selzle, H.L., Schlag, E.W.: Collect. Czech. Chem. Commun.57, 1186 (1992)

    Google Scholar 

  28. Bone, R.G.A., Handy, N.C.: Theor. Chim. Acta78, 133 (1990)

    Google Scholar 

  29. Yu, J., Su, S., Bloor, J.E.: J. Phys. Chem.94, 5589 (1990)

    Google Scholar 

  30. Fraser, G.T., Suenram, R.D., Lovas, F.J., Pine, A.S., Hougen, J.T., Laffery, W.J., Muenter, J.S.: J. Chem. Phys.89, 6028 (1988)

    Google Scholar 

  31. Prichard, D.G., Nandi, R.N., Muenter, J.S.: J. Chem. Phys.89, 115 (1988)

    Google Scholar 

  32. Ohshima, Y., Matsumoto, Y., Takami, M., Kuchitsu, K.: Chem. Phys. Lett.147, 1 (1988)

    Google Scholar 

  33. Prichard, D., Muenter, J.S.: Chem. Phys. Lett.135, 9 (1987)

    Google Scholar 

  34. Bone, R.G.A., Murray, C.W., Amos, R.D., Handy, N.C.: Chem. Phys. Lett.161, 166 (1989)

    Google Scholar 

  35. Rytter, E., Gruen, D.M.: Spectrochim. Acta35A, 199 (1979)

    Google Scholar 

  36. Cowieson, D.R., Barnes, A.J., Orville-Thomas, W.J.: J. Raman Spectrosc.10, 224 (1981)

    Google Scholar 

  37. Novicks, S., Lejn, J.M., Klemperer, W.: J. Am. Chem. Soc.95, 8189 (1973)

    Google Scholar 

  38. Buck, U., Lauenstein, Ch., Rudolph, A., Heijmen, B., Stolte, S., Reuss, J.: Chem. Phys. Lett.144, 396 (1988)

    Google Scholar 

  39. Tsuzuki, S., Tanabe, K.: J. Phys. Chem.96, 10804 (1992)

    Google Scholar 

  40. Ahlrichs, A., Brode, S., Buck, U., Dekieviet, M., Lauenstein, Ch., Rudolph, A., Schmidt, B.: Z. Phys. D15, 341 (1990)

    Google Scholar 

  41. Alberts, I.L., Timothy, W., Handy, N.C.: J. Chem. Phys.88, 3811 (1988)

    Google Scholar 

  42. Suzuchi, K., Iguchi, K.: J. Chem. Phys.77, 4594 (1982)

    Google Scholar 

  43. Wormer, P.E.S., van der Avoird, A.: J. Chem. Phys.62, 3327 (1975)

    Google Scholar 

  44. Brenner, V., Martrenchard, S., Millie, P., Jouvet, C., Lardeux-Dedonder, C., Solgadi, D.: (submitted)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenner, V., Millie, P. Intermolecular interactions: basis set and intramolecular correlation effects on semiempirical methods. Application to (C2H2)2, (C2H2)3 and (C2H4)2 . Z Phys D - Atoms, Molecules and Clusters 30, 327–340 (1994). https://doi.org/10.1007/BF01426398

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01426398

PACS

Navigation