Skip to main content
Log in

Time-resolved analysis of a transversely excited nitrogen laser

  • Papers
  • Published:
Opto-electronics Aims and scope Submit manuscript

Abstract

Time-resolved measurements have been made of stimulated and spontaneous emission, voltage and current in a transversely excited nitrogen laser giving 50 kW peak power at 337 nm. The excitation rates to the laser levels were calculated from literature data using the results of electrical measurements, a check being obtained from measurements of spontaneous emission. The Druyvesteyn electron energy distribution gives better agreement with measurements than the Maxwellian. Laser pulses were calculated by solving numerically the space-dependent rate equations for population and photon number densities. Recent literature data on the transition probabilities and the pressure-dependence of the lifetime of the upper laser level were introduced into the calculations. The formation of a thin discharge channel was found to be essential for the high gain achieved. The onset of stimulated emission as observed on oscilloscope pictures was found to have a delay of the order of 1 ns in relation to the onset of current and spontaneous emission. This delay was confirmed by the calculations and explained as the time required to build up the population inversion and radiation density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Leonard,Appl. Phys. Lett. 7 (1965) 4–6.

    Article  Google Scholar 

  2. J. D. Shipman, Jun.,ibid 10 (1967) 3–4.

    Article  Google Scholar 

  3. M. Geller, D. E. Altman andT. A. DeTemple,Appl. Opt. 7 (1968) 2232–2237.

    Google Scholar 

  4. D. Basting, F. P. Schäfer andB. Steyer,Optoelectronics 4 (1972) 43–49.

    Google Scholar 

  5. R. Targ,IEEE, J. of Quant. Electr. QE-8 (1972) 726–728.

    Google Scholar 

  6. P. Schenk andH. Metcalf,Appl. Opt. 12 (1973) 183–186.

    Google Scholar 

  7. R. Cubeddu andS. M. Curry,IEEE, J. of Quant. Electr. QE-9 (1973) 499–500.

    Google Scholar 

  8. B. W. Woodward, V. J. Ehlers andW. C. Lineberger,Rev. Sci. Instrum. 44 (1973) 882–887.

    Article  Google Scholar 

  9. E. T. Gerry,Appl. Phys. Lett. 7 (1965) 6–8.

    Article  Google Scholar 

  10. A. W. Ali, A. C. Kolb andA. D. Anderson,Appl. Opt. 6 (1967) 2115–2119.

    Google Scholar 

  11. A. W. Ali,ibid 8 (1969) 993–996.

    Google Scholar 

  12. J. H. Parks, D. Ramachandra Rao andA. Javan,Appl. Phys. Lett. 13 (1968) 142–144.

    Article  Google Scholar 

  13. C. A. Massone, M. Garavaglia, M. Gallardo, J. A. E. Calatroni andA. A. Tagliaferri,Appl. Opt. 11 (1972) 1317–1328.

    Google Scholar 

  14. H. E. B. Andersson,Physica Scripta 4 (1971) 215–220.

    Google Scholar 

  15. H. Raether, ’Electron Avalanches and Breakdown in Gases’ Butterworth, London (1964).

    Google Scholar 

  16. H. E. B. Andersson andR. C. Tobin,Physica Scripta 9 (1974) 7–14.

    Google Scholar 

  17. H. S. W. Massey, ‘Electronic and Ionic Impact Phenomena’, Vol. 2 Oxford U.P., London (1969) p. 985.

    Google Scholar 

  18. D. J. Burns, F. R. Simpson andJ. W. McConkey,J. Phys. B 2 (1969) 52–64.

    Google Scholar 

  19. J. W. McConkey andF. R. Simpson,ibid 2 (1969) 923–929.

    Google Scholar 

  20. K. Nissen, Dissertation (Univ. Hamburg 1972).

  21. R. E. Imhof andF. H. Read,J. Phys. B 4 (1971) 1063–1069.

    Google Scholar 

  22. K. H. Wagner,Z. Naturforschung 19a (1964) 716–721.

    Google Scholar 

  23. H. Anton,Ann. Physik 18 (1966) 178–193.

    Google Scholar 

  24. A. Wayne Johnson andR. G. Fowler,J. Chem. Phys. 53 (1970) 65–72.

    Article  Google Scholar 

  25. B. A. Lengyel, ‘Laser Physics’, Wiley, New York (1971) p. 191.

    Google Scholar 

  26. I. Kovacs,Astrophys. J. 145 (1966) 634.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, H.E.B., Borgström, S.A. Time-resolved analysis of a transversely excited nitrogen laser. Opto-electronics 6, 225–234 (1974). https://doi.org/10.1007/BF01423986

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01423986

Keywords

Navigation