Skip to main content
Log in

Isolation of adaptation mechanisms and photopigment spectra by vitamin A deprivation inDrosophila

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

Intense short wavelength adaptation converts rhodopsin to a long wavelength absorbing stable metarhodopsin and inactivates R1–6 photoreceptors inDrosophila. In addition to decreasing sensitivity, vitamin A deprivation eliminates this short wavelength induced R1–6 inactivation. A model (Fig. 4) explains this adaptational difference of vitamin A deprivedDrosophila (from normally-reared or high vitamin A supplemented flies) in terms of decreasing photopigment quantity without decreasing membrane adaptation mediating channels. The data and model suggest that 1) photopigment and membrane processes are separate; 2) transduction and adaptational mechanisms are different; and 3) maximal adaptation establishes a steadystate wavelength-specific rhodopsin to metarhodopsin ratio. Sensitivity as a function of wavelength for maximal adapting stimuli was obtained from vitamin A deprivedDrosophila (Fig. 3). These data reflect relative rhodopsin levels. They were used to derive a measure related to spectral sensitivity ofin vivo metarhodopsin spectral absorption characteristics (Fig. 5). The presently reported metarhodopsin spectral function has certain advantages over previously reported electrophysiologically-based functions. It differs fromin vitro data by having an ultraviolet maximum and a shorter wavelength visible maximum. This finding is consistent with current theory on fly vision. The data obtained from vitamin A deprivedDrosophila are similar to data fromCalliphora andMusca; possible adaptational differences among different fly species may be explained by the model which explains differences betweenDrosophila in the vitamin A deprived vs. enriched conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cosens, D., Wright, R.: Light elicited isolation of the complementary visual input systems in white-eyeDrosophila. J. Insect Physiol.21, 1111–1120 (1975)

    PubMed  Google Scholar 

  • Doane, W.W.: Drosophila. In: Methods in developmental biology (ed. F.H. Wilt, N.K. Wessels). New York: Thomas Y. Crowell Co. 1967

    Google Scholar 

  • Fein, A., Cone, R.A.:Limulus rhodopsin: rapid return of transient intermediates to the thermally stable state. Science182, 495–497 (1973)

    PubMed  Google Scholar 

  • Fein, A., DeVoe, R.D.: Adaptation in the ventral eye ofLimulus is functionally independent of the photochemical cycle, membrane potential, and membrane resistance. J. gen. Physiol.61, 273–289 (1973)

    PubMed  Google Scholar 

  • Fein, A., Lisman, J.: Localized desensitization ofLimulus photoreceptors produced by light or intracellular calcium ion injection. Science187, 1094–1095 (1975)

    PubMed  Google Scholar 

  • Goldsmith, T.H., Barker, R.J., Cohen, C.F.: Sensitivity of visual receptors of carotenoid-depleted flies: a vitamin A deficiency in an invertebrate. Science146, 65–67 (1964)

    PubMed  Google Scholar 

  • Goldsmith, T.H., Bernard, G.D.: The visual system of insects. In: Physiology of insecta, vol. II, 2nd ed. (ed. M. Rockstein). New York: Academic Press 1974

    Google Scholar 

  • Goldsmith, T.H., Fernandez, H.R.: Some photochemical and physiological aspects of visual excitation in compound eyes. In: The functional organization of the compound eye (ed. C.G. Bernhard). Oxford-New York: Pergamon Press 1966

    Google Scholar 

  • Hamdorf, K., Paulsen, R., Schwemer, J.: Photoregeneration and sensitivity control of photoreceptors of invertebrates. In: Biochemistry and physiology of visual pigments (ed. H. Langer). Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  • Hamdorf, K., Rosner, G.: Adaptation und Photoregeneration im Fliegenauge. J. comp. Physiol.86, 281–292 (1973)

    Google Scholar 

  • Harris, W.A., Stark, W.S., Walker, J.A.: Genetic dissection of the photoreceptor system in the compound eye ofDrosophila melanogaster. J. Physiol. (Lond.), in press (1976)

  • Horridge, G.A., Mimura, K.: Fly photoreceptors I. Physical separation of two visual pigments inCalliphora retinula cells 1–6. Proc. roy. Soc. B190, 211–224 (1975)

    Google Scholar 

  • Lindsley, D.L., Grell, E.H.: Genetic variations ofDrosophila melanogaster. Oak Ridge. Tennessee: Oak Ridge National Laboratory 1968

    Google Scholar 

  • Lisman, J.E., Brown, J.E.: The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response ofLimulus ventral photoreceptors. J. gen. Physiol.59, 701–719 (1972)

    PubMed  Google Scholar 

  • Minke, B., Hochstein, S., Hillman, P.: Antagonistic process as source of visible-light suppression of afterpotential inLimulus uv photoreceptors. J. gen. Physiol.62, 787–791 (1973)

    PubMed  Google Scholar 

  • Minke, B., Wu, C.-F., Pak, W.L.: Isolation of light induced response of the central retinula cells from the electroretinogram ofDrosophila. J. comp. Physiol.98, 345–355 (1975)

    Google Scholar 

  • Muijser, H., Leutscher-Hazelhoff, J.T., Stavenga, D.G., Kuiper, J.W.: Photopigment conversions expressed in receptor potential and membrane resistance of blowfly visual sense cells. Nature (Lond.)254, 520–522 (1975)

    Google Scholar 

  • Ostroy, S.E., Wilson, M., Pak, W.L.:Drosophila rhodopsin: photochemistry, extraction and differences in the norp AP12 phototransduction mutant. Biochem. biophys. Res. Commun.59, 960–966 (1974)

    PubMed  Google Scholar 

  • Pak, W.L., Lidington, K.J.: Fast electrical potential from a long lived, long-wavelength photoproduct of fly visual pigment. J. gen. Physiol.63, 740–756 (1974)

    PubMed  Google Scholar 

  • Snyder, A.W., Pask, C.: Spectral sensitivity of dipteran retinula cells. J. comp. Physiol.84, 59–76 (1973)

    Google Scholar 

  • Stark, W.S.: Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments inDrosophila. J. comp. Physiol.96, 343–356 (1975)

    Google Scholar 

  • Stark, W.S., Pransky, G.S., Zitzmann, W.G.: Separation of photopigment from membrane adaptation by vitamin A deprivation in theDrosophila retina. In: Society for Neuroscience Program and Abstracts (1975), (abstract)

  • Stavenga, D.G.: Dark regeneration of invertebrate visual pigments. In: Photoreceptor optics (ed. A.W. Snyder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Stavenga, D.G., Zantema, A., Kuiper, J.W.: Rhodopsin processes and the function of the pupil mechanism in flies. In: Biochemistry and physiology of visual pigments (ed. H. Langer). Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  • Wasserman, G.S.: Invertebrate color vision and the tuned receptor paradigm. Science180, 268–275 (1973)

    PubMed  Google Scholar 

  • Zimmerman, W.F., Goldsmith, T.H.: Photosensitivity of the circadian rhythm and of visual receptors in carotenoid-depletedDrosophila. Science171, 1167–1169 (1971)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NSF Grant BMS74-12817 and Johns Hopkins Biomedical Sciences Research award from NIH 3-SO5-RR07041-08S1 to W. S. S. We thank William Sofer, Glenn Pransky and Austina Ivanyshyn for advise and technical assistance and John Walker, William Sofer and Elliott Blass for criticisms on the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stark, W.S., Zitzmann, W.G. Isolation of adaptation mechanisms and photopigment spectra by vitamin A deprivation inDrosophila . J. Comp. Physiol. 105, 15–27 (1976). https://doi.org/10.1007/BF01380050

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01380050

Keywords

Navigation