Skip to main content
Log in

Multi-quark hamiltonian and the nuclear force

  • Hadron Physics
  • Published:
Zeitschrift für Physik A Atomic Nuclei

Abstract

We propose a system of simple rules which give the binding energy and approximate ground state structure of a nucleus, dependent only on the number of protons and neutrons making it up. This “nuclear code” is based on theN-quark Schrödinger equation and uses ideas familiar from atomic chemistry. We demonstrate some of the important ramifications by computing the4He elastic form factor. The nuclear code performs better than its atomic counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a review, see Ynduŕain, F.J.: Quantum chromodynamics, an introduction to the theory of quarks and gluons. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  2. See for example Otto, S.W., Stack, J.D.: Phys. Rev. Lett.52, 2328 (1984); Barkai, D. et al: Phys. Rev. D30, 2201 (1984);

    Google Scholar 

  3. Koite, Y.: Phys. Rev. Lett.59, 962 (1987)

    Google Scholar 

  4. Politzer, H.D.: Phys. Rep.14C, 129 (1974); Close, F.E.: An introduction to quarks and partons. New York: Academic Press 1979; Perkins, Donald H.: Introduction to high energy physics, 3rd Edn. Reading: Addison-Wesley 1987

    Google Scholar 

  5. Laermann, E. et al.: Phys. Lett. B173, 437 (1986)

    Google Scholar 

  6. Willey, R.S.: Phys. Rev. D18, 270 (1978); Fishbane, P.M., Grisaru, M.T.: Phys. Lett. B74, 98 (1978); Gavela, M.B. et al.: Phys. Lett. B82, 431 (1979)

    Google Scholar 

  7. Gleeson, A., Morley, P.D., Plümer, M.: Phys. Rev. D36, 2575 (1987)

    Google Scholar 

  8. Kiefer, Mark Linden: Ph. D. dissertation, Iowa State University (1983), available from University Microfilm International, 300 North Zeeb Road, Ann Arbor, MI 48106 USA

    Google Scholar 

  9. Isgur, N., Karl, G.: Phys. Lett. B72, 109 (1977)

    Google Scholar 

  10. Williams, S.A., Margetan, F.J., Morley, P.D., Pursey, D.L.: Phys. Rev. Lett.49, 771 (1982); Morley, P.D., Pursey, D.L., Williams, S.A.: Constituent quark model of the nucleon-nucleon interaction, Phys. Rev. C (accepted); Williams, S.A., Margeton, F.J., Morley, P.D., Pursey, D.L.: Constituent quark model of the nucleon-nucleon interaction, application to the deuteron. Phys. Rev. C (accepted)

    Google Scholar 

  11. Reed-Margeton, D.: Ph. D. dissertation, Iowa State University (1983), available from University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106 USA

    Google Scholar 

  12. Johnson, K.: Acta. Phys. Pol. B6, 865 (1975)

    Google Scholar 

  13. Janz, George J.: Estimation of thermodynamic properties of organic compounds. New York: Academic Press 1958

    Google Scholar 

  14. Janz, George J.: Loc. cit., Table 7.4

  15. Morley, P.D.: Universidad Tecnica Federico Santa MariaUSM-24 (1984) unpublished, Valparaiso, Chile

  16. Robson, D.: Nucl. Phys. A308, 381 (1978)

    Google Scholar 

  17. Pauling, Linus: Science150, 297 (1965); Nature208, 174 (1965); Phys. Rev. Lett.15, 499 (1965); Proc. Nat. Acad. Sci.54, 984 (1965); Rev. Rowmaine Phys.II, 825 (1966); Proc. Nat Acad. Sci.46, 2175 (1967);64, 807 (1969); Phys. Rev. C22, 1585 (1980); Proc. Nat. Acad. Sci.78, 5296 (1981)

    Google Scholar 

  18. deShalit, Amos, Feshbach, Herman: Theoretical nuclear physics, Vol. 1. New York: John Wiley & Sons 1974

    Google Scholar 

  19. Hauge, P.S., Williams, S.A., Duffey, G.H.: Phys. Rev. C4, 1044 (1971)

    Google Scholar 

  20. Janz, George J.: Loc. cit., Chap. 7, Sect. 3

  21. This is the Coulomb corrected binding energy in MeV predicted for a nucleus ofA nucleons,Z of which are protons. The Coulomb energy is calculated from (16)

  22. Experimental binding energy per nucleon for theAZ nucleus, except forA=5, 8 where it is the total unbound energy for5He,8Be respectively

  23. This is the H(6) solution taken from [9]

  24. Because of geometry, the maximum binding energy is not realizable; see text

  25. The bonds predict the Coulomb uncorrected BE: E(8)=2E(4). The 1.89 MeV is the estimated theoretical Coulomb energy

  26. Morley, P.D., Williams, S.A.: Z. Phys. A — Atomic Nuclei331, 239 (1988)

    Google Scholar 

  27. McCarthy, J.S., Sick, I., Whitney, R.R.: Phys. Rev. C15, 1396 (1977); Arnold, R.G. et al.: Phys. Rev. Lett.40, 1429 (1978)

    Google Scholar 

  28. Day, D.: Private communication

  29. See Arnold, R.G. et al.: Phys. Rev. Lett.40, 1429 (1978)

    Google Scholar 

  30. Hamermesh, M.: Group theory. Reading: Addison-Wesley 1962

    Google Scholar 

  31. Williams, S.A., Pursey, D.L.: J. Math. Phys.17, 1383 (1976)

    Google Scholar 

  32. Donnelly, T., Williams, S.A., Sick, I.: Rev. Mod. Phys.56, 461 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morley, P.D., Williams, S.A. Multi-quark hamiltonian and the nuclear force. Z. Physik A - Atomic Nuclei 336, 321–332 (1990). https://doi.org/10.1007/BF01292864

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01292864

PACS

Navigation