Skip to main content
Log in

Higher-plant plasma membrane cytochromeb 561: A protein in search of a function

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

During the past twenty years evidence has accumulated on the presence of a specific high-potential, ascorbate-reducibleb-type cytochrome in the plasma membrane (PM) of higher plants. This cytochrome is named cytochromeb 561 (cytb 561) according to the wavelength maximum of its α-band in the reduced form. More recent evidence suggests that this protein is homologous to ab-type cytochrome present in chromaffin granules of animal cells. The plant and animal cytochromes share a number of strikingly similar features, including the high redox potential, the ascorbate reducibility, and most importantly the capacity to transport electrons across the membrane they are located in. The PM cytb 561 is found in all plant species and in a variety of tissues tested so far. It thus appears to be a ubiquitous electron transport component of the PM. The cytochromesb 561 probably constitute a novel class of transmembrane electron transport proteins present in a large variety of eukaryotic cells. Of particular interest is the recent discovery of a number of plant genes that show striking homologies to the genes coding for the mammalian cytochromesb 561. A number of highly relevant structural features, including hydrophobic domains, heme ligation sites, and possible ascorbate and monodehydroascorbate binding sites are almost perfectly conserved in all these proteins. At the same time the plant gene products show interesting differences related to their specific location at the PM, such as potentially N-linked glycosylation sites. It is also clear that at least in several plants cytb 561 is represented by a multigene family. The current paper presents the first overview focusing exclusively on the plant PM cytb 561, compares it to the animal cytb 561, and discusses the possible physiological function of these proteins in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Asc:

ascorbate

cyt:

cytochrome

DHA:

dehydroascorbate

E0′:

standard redox potential

EST:

expressed sequence tag

His:

histidine

MDA:

monodehydroascorbate

Met:

methionine

PM:

plasma membrane

References

  • Ahmad M, Cashmore AR (1995)HY4 gene ofA. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366: 162–166

    Google Scholar 

  • Annaert W (1993) A biochemical and morphological study of the secretory pathways in the synapto-adrenal system: implications on exocytosis and membrane recycling. PhD Thesis, Universiteit Antwerpen, Antwerp, Belgium

    Google Scholar 

  • Apps DK, Pryde JG, Phillips JH (1980) Cytochromeb561 is identical with chromomembrin B, a major polypeptide of chromaffin granule membranes. Neuroscience 5: 2279–2287

    Google Scholar 

  • —, Boisclair MD, Gavine FS, Pettigrew GH (1984) Unusual redox behaviour of cytochromeb 561 from bovine granule membranes. Biochim Biophys Acta 764: 8–16

    Google Scholar 

  • Arrigoni O (1994) Ascorbate system in plant development. J Bioenerg Biomembr 26: 407–419

    Google Scholar 

  • Asard H, Bérczi A (1998) Comparison of the redox activities in plasma membranes from roots and shoots of etiolated bean seedlings. Protoplasma 205: 37–42

    Google Scholar 

  • —, Caubergs RJ (1990) LIAC activity in higher plants. In: Lenci F, Ghetti F, Colombetti G, Häder DP, Song PS (eds) Biophysics of photoreceptors and photomovements in microorganism. Plenum, New York, pp 181–189 (NATO ASI series, series A, vol 211)

    Google Scholar 

  • — —, Renders D, De Greef JA (1987) Duroquinone-stimulated NADH oxidase andb-type cytochromes in the plasma membrane of cauliflower and mung beans. Plant Sci 53: 109–119

    Google Scholar 

  • —, Venken M, Caubergs R, Reijnders W, Oltmann FL, De Greef JA (1989)b-Type cytochromes in higher plant plasma membranes. Plant Physiol 90: 1077–1083

    Google Scholar 

  • —, Horemans N, Caubergs RJ (1992) Transmembrane electron transport in ascorbate-loaded plasma membrane vesicles from higher plants involves ab-type cytochrome. FEBS Lett 306: 143–146

    Google Scholar 

  • — — — (1995a) Involvement of ascorbic acid and ab-type cytochrome in plant plasma membrane redox reactions. Protoplasma 184: 36–41

    Google Scholar 

  • — —, Briggs WN, Caubergs RJ (1995b) Blue light perception by endogenous redox components of the plant plasma membrane. Photochem Photobiol 61: 518–522

    Google Scholar 

  • — —, Preger V, Trost P (1998) Plasma membraneb-type cytochromes. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer, Dordrecht, pp 1–31

    Google Scholar 

  • —, Terol-Alcayde J, Preger V, Del Favero J, Vereist W, Sparla F, Pérez-Alonso M, Trost P (2000)Arabidopsis thaliana sequence analysis confirms the presence of cytb-561 in plants: evidence for a novel protein family. Plant Physiol Biochem 38: 905–912

    Google Scholar 

  • Askerlund P, Larsson C, Widell S (1989) Cytochromes of plant plasma membranes: characterization by absorbance difference spectrophotometry and redox titration. Physiol Plant 76: 123–134

    Google Scholar 

  • Askwith C, Kaplan J (1998) Iron transport in yeast: the involvement of an iron reductase and oxidase. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer, Dordrecht, pp 157–177

    Google Scholar 

  • Bérczi A, Asard H (1995) NAD(P)H-utilizing oxidoreductases of the plant plasma membrane: an overview of presently purified proteins. Protoplasma 184: 140–144

    Google Scholar 

  • —, Møller IM (1998) NADH-monodehydroascorbate oxidoreductase is one of the redox enzymes in spinach leaf plasma membranes. Plant Physiol 116: 1029–1036

    Google Scholar 

  • — — (2000) Redox enzymes in the plant plasma membrane and their possible roles. Plant Cell Environ 23: 1287–1302

    Google Scholar 

  • —, Van Gestelen P, Pupillo P (1998) NAD(P)H-utilizing flavoenzymes in the plant plasma membrane. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer, Dordrecht, pp 33–67

    Google Scholar 

  • —, Lüthje S, Asard H (2001)b-Type cytochromes in plasma membranes ofPhaseolus vulgaris hypocotyls,Arabidopsis thaliana andZea mays roots. Protoplasma 217: 50–55

    Google Scholar 

  • Borgeson CE, Bowman BB (1985) Blue light-reducible cytochromes in membrane fractions fromNeurospora crassa. Plant Physiol 78: 433–437

    Google Scholar 

  • Brain RD, Freeberg JA, Weiss CV, Briggs WR (1977) Blue light-induced absorbance changes in membrane fractions from corn andNeurospora. Plant Physiol 59: 948–952

    Google Scholar 

  • Burbaev DSh, Moroz IA, Kamenskiy YuA, Konstantinov AA (1991) Several forms of chromaffin granule cytochromeb-561 revealed by EPR spectroscopy. FEBS Lett 283: 97–99

    Google Scholar 

  • Caubergs R, Widell S, Larsson C, De Greef JA (1983) Comparison of two methods for the preparation of a plasma membrane fraction of cauliflower inflorescences containing a blue light reducibleb-type cytochrome. Physiol Plant 57: 291–295

    Google Scholar 

  • —, Vanden Driessche T, De Greef JA (1984) A light-inducible cytochromeb reduction in the green algaAcetabularia. In: Senger H (ed) Blue light effect in biological systems. Springer, Berlin Heidelberg New York Tokyo, pp 173–176

    Google Scholar 

  • —, Asard HH, De Greef JA, Leeuwerik FJ, Oltmann FL (1986) Light-inducible absorbance changes and vanadate-sensitive ATPase activity associated with the presumptive plasma membrane fraction from cauliflower inflorescences. Photochem Photobiol 44: 641–649

    Google Scholar 

  • — — — (1988)b-Type cytochromes, light and NADH-dependent oxido-reductase activities in plant plasma membranes. In: Crane FL. Morré DJ, Löw HE (eds) Plasma membrane oxidoreductases in control of animal and plant growth. Plenum, New York, pp 273–282 (NATO ASI series, series A, vol 157)

    Google Scholar 

  • Christie JM, Reymond P, Powell GK, Bernasconi P, Raibekas AA, Liscum E, Briggs WR (1998)Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282: 1698–1701

    Google Scholar 

  • —, Salomon M, Nozue K, Wada M, Briggs WR (1999) LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc Natl Acad Sci USA 96: 8779–8783

    Google Scholar 

  • Cooper JB, Varner JE (1984) Cross-linking of soluble extensin in isolated cell walls. Plant Physiol 76: 414–417

    Google Scholar 

  • Dahse I, Bernstein M, Müller E, Petzold U (1989) On the possible function of electron transport in the plasmalemma of plant cells. Biochem Physiol Pflanzen 185: 145–180

    Google Scholar 

  • Dancis A, Roman DG, Anderson GJ, Hinnebusch AG, Klausner RD (1992) Ferric reductase ofSaccharomyces cerevisiae: molecular characterisation, role in iron uptake and transcriptional control by iron. Proc Natl Acad Sci USA 89: 3869–3873

    Google Scholar 

  • De Gara L, Paciolla C, Liso R, Stefani A, Arrigoni O (1991) Correlation between ascorbate peroxidase activity and some anomalies of seedlings from aged caryopses ofDasypyrum villosum L. Borb. J Plant Physiol 137: 697–700

    Google Scholar 

  • Degli Esposti M, Kamensky YA, Arutjunjan AM, Konstantinov AA (1989a) A model for the molecular organisation of cytochrome β-561 in chromaffin granule membranes. FEBS Lett 245: 74–78

    Google Scholar 

  • —, Palmer G, Lenaz G (1989b) Circular dichroic spectroscopy of membrane heamoproteins: the molecular determinants of the dichroic properties of theb cytochromes in various ubiquinol: cytochrome c reductases. Eur J Biochem 182: 27–36

    Google Scholar 

  • de Pinto MC, Francis D, De Gara L (1999) The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma 209: 90–97

    Google Scholar 

  • Döring O, Lüthje S, Böttger M (1998) To be or not to be: a question of plasma membrane redox? Prog Bot 59: 328–354

    Google Scholar 

  • Duong LT, Fleming PJ (1982) Isolation and properties of cytochromeb 561 from bovine adrenal chromaffin granules. J Biol Chem 257: 8561–8564

    Google Scholar 

  • Flatmark T, Terland O (1971) Cytochromeb 561 of the bovine adrenal chromaffin granules: a high potentialb-type cytochrome. Biochim Biophys Acta 253: 487–491

    Google Scholar 

  • Foyer Ch, Lelandais M (1996) A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasma membranes of pea leaf mesophyll cells. J Plant Physiol 148: 391–398

    Google Scholar 

  • Glomp I, Hess B (1986) Cytochromeb of theDictyostelium discoideum plasma membrane. Biochim Biophys Acta 852: 315–319

    Google Scholar 

  • González-Reyes JA, Alcain FJ, Caler JA, Serrano A, Cordoba F, Navas P (1995) Stimulation of onion root elongation by ascorbate and ascorbate free radical inAllium cepa L. Protoplasma 184: 31–35

    Google Scholar 

  • —, Córdoba F, Navas P (1998) Involvement of plasma membrane redox systems in growth control of animal cells. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer, Dordrecht, pp 193–213

    Google Scholar 

  • Hendry GAF, Houghton JD, Jones OTG (1981) The cytochromes in microsomal fractions of germinating mung beans. Biochem J 194: 743–751

    Google Scholar 

  • Hofmann K, Stoffel W (1993) Tmbase: a database of membrane spanning protein segments. Biol Chem 347: 166

    Google Scholar 

  • Horemans N, Asard H, Caubergs RJ (1994) The role of ascorbate free radical as an electron acceptor to cytochromeb-mediated trans-plasma membrane electron transport in higher plants. Plant Physiol 104: 1455–1458

    Google Scholar 

  • —, Foyer C, Asard H (2000a) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5: 263–267

    Google Scholar 

  • — —, Potters G, Asard H (2000b) Ascorbate function and associated transport systems. Plant Physiol Biochem 38: 531–540

    Google Scholar 

  • Hunter A, Waldron K, Apps DK (1982) Determination of the proportion of sealed vesicles in a preparation of chromaffin granule membrane “ghosts”. FEBS Lett 144: 51–56

    Google Scholar 

  • Jesaitis AJ, Heners P, Hertel R, Briggs WR (1977) Characterization of a membrane fraction containing ab-type cytochrome. Plant Physiol 59: 941–947

    Google Scholar 

  • Kato N, Esaka M (1999) Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells. Physiol Plant 105: 321–329

    Google Scholar 

  • Kelley PM, Njus D (1986) Cytochromeb 561 spectral changes associated with electron transfer in chromaffin-vesicle ghosts. J Biol Chem 261: 6429–6432

    Google Scholar 

  • Kent UT, Fleming PJ (1990) Cytochromeb 561 is fatty acylated and oriented in the chromaffin granule membrane with its carboxyl terminus cytoplasmically exposed. J Biol Chem 265: 16422–16427

    Google Scholar 

  • Kobayashi K, Tsubaki M, Tagawa S (1998) Distinct roles of two heme centers for transmembrane electron transfer in cytochromeb 561 from bovine adrenal chromaffin vesicles as revealed by pulse radiolysis. J Biol Chem 273: 16038–16042

    Google Scholar 

  • Lascève G, Leymarie J, Olney MA, Liscum E, Christie JM, Vavasseur A, Briggs WR (1999)Arabidopsis contains at least four independent blue-light-activated signal transduction pathways. Plant Physiol 120: 605–614

    Google Scholar 

  • Leong TY, Vierstra RD, Briggs WR (1981) A blue light-sensitive cytochrome complex from corn coleoptiles: further characterization. Photochem Photobiol 34: 697–703

    Google Scholar 

  • Lesuisse E, Casteras-Simon M, Labbe P (1996) Evidence for theSaccharomyces cerevisiae ferrireductase system being a multicomponent electron transport chain. J Biol Chem 271: 13578–13583

    Google Scholar 

  • Lin W (1984) Futher characterisation on the transport property of plasmalemma NADH oxidation system in isolated corn root protoplasts. Plant Physiol 74: 219–222

    Google Scholar 

  • Liscum E, Briggs WR (1995) Mutations in the NPH1 locus ofArabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7: 473–485

    Google Scholar 

  • —, Hangarter RP (1994)Arabidopsis mutants lacking blue light-dependent inhibition of hypocotyl elongation. Plant Cell 3: 685–694

    Google Scholar 

  • Lüthje S, Döring O, Heuer S, Lüthen H, Böttger M (1997) Oxidoreduction in plant plasma membranes. Biochim Biophys Acta 1331: 81–102

    Google Scholar 

  • Marrè MT, Moroni A, Albergoni FG, Marrè E (1988) Plasmalemma redox activity and H+-extrusion I: activation of the H+-pump by ferricyanide-induced potential depolarization and cytoplasm acidification. Plant Physiol 87: 25–29

    Google Scholar 

  • Møller IM, Askerlund P, Widell S (1991) Electron transport at the plant plasma membrane. In: Crane FL, Morré DJ, Löw HE (eds) Oxidoreduction at the plasma membrane: relation to growth and transport, vol 2. CRC Press, Boca Raton, pp 35–59

    Google Scholar 

  • Muñoz V, Butler WL (1975) Photoreceptor pigment for blue light inNeurospora crassa. Plant Physiol 55: 421–426

    Google Scholar 

  • Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897–911

    Google Scholar 

  • Njus D, Knoth J, Cook C, Kelley PM (1983) Electron transfer across the chromaffin granule membrane. J Biol Chem 258: 27–30

    Google Scholar 

  • —, Kelley PM, Harnadek GJ, Pacquing YV (1987) Mechanism of ascorbic acid regeneration mediated by cytochromeb 561. Ann N Y Acad Sci 493: 108–119

    Google Scholar 

  • Okuyama E, Yamamoto R, Ichikawa Y, Tsubaki M (1998) Structural basis for the electron transfer across the chromaffin vesicle membranes catalyzed by cytochromeb 561: analyses of DNA nucleotide sequences and visible absorption spectra. Biochim Biophys Acta 1383: 269–278

    Google Scholar 

  • Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ (1988) The quaternary structure of the plasma membraneb-type cytochrome of human granulocytes. Biochim Biophys Acta 932: 71–83

    Google Scholar 

  • Perin MS, Fried VA, Slaughter CA, Südhof TC (1988) The structure of cytochromeb 561, a secretory vesicle-specific electron transport protein. EMBO J 7: 2697–2703

    Google Scholar 

  • Poff KL, Butler WL (1975) Spectral characterisation of the photoreducibleb-type cytochrome ofDictyostelium discoideum. Plant Physiol 55: 427–429

    Google Scholar 

  • Potters G, Horemans N, Caubergs RJ, Asard H (2000) Ascorbate and dehydroascorbate influence in cell cycle progression inNicotiana tabacum cell suspension. Plant Physiol 124: 17–20

    Google Scholar 

  • Raghavendra AS (1990) Blue light effects on stomata are mediated by the guard cell plasma membrane redox system distinct from the proton translocating ATPase. Plant Cell Environ 13: 105–110

    Google Scholar 

  • Ramirez JM, Galego GG, Serrano R (1984) Electron transfer constituents in plasma membrane fractions fromAvena sativa andSaccharomyces cerevisae. Plant Sci 34: 103–110

    Google Scholar 

  • Rautenkranz AAF, Li L, Mächler F, Märtinoia E, Oertli JJ (1994) Transport of ascorbic acid and dehydroascorbic acid across protoplasts and vacuole membranes isolated from barley (Hordeum vulgare L. cv Gerbel) leaves. Plant Physiol 106: 187–193

    Google Scholar 

  • Reichheld J-P, Vernoux T, Lardon F, Van Montagu M, Inzé D (1999) Specific checkpoints regulate plant cell cycle progression in response to oxidative stress. Plant J 17: 101–110

    Google Scholar 

  • Rich PR, Bendall DS (1975) Cytochrome components of plant microsomes. Eur J Biochem 55: 333–341

    Google Scholar 

  • Roman DG, Dancis A, Anderson GJ, Klausner RD (1993) The fission yeast ferric reductase gene frp1+ is required for ferric uptake and encodes a protein that is homologous to the gp91-phox subunit of the human NADPH phagocyte oxidoreductase. Mol Cell Biol 13: 4342–4350

    Google Scholar 

  • Royer-Pokora B, Kunkel LM, Monaco AP, Goff SC, Newburger PE, Baehner RL, Cole FL, Curnutte JT, Orkin SH (1986) Cloning the gene for an inherited human disorder — chronic granulomatous disease — on the basis of its chromosomal location. Nature 322: 32–38

    Google Scholar 

  • Sanchez M, Queijero E, Revilla G, Zarra I (1997) Changes in ascorbic acid levels in apoplastic fluid during growth of pine hypocotyls: effect on peroxidase activities associated with the cell walls. Physiol Plant 101: 815–820

    Google Scholar 

  • Sapper H, Kang S-O, Paul H-H, Lohmann W (1982) The reversibility of the vitamin C redox system: electrochemical reasons and biological aspects. Z Naturforsch 37c: 942–946

    Google Scholar 

  • Scagliarini S, Rotino L, Bäurle I, Asard H, Pupillo P, Trost P (1998) Initial purification study of the cytochromeb 561 of bean hypocotyl plasma membrane. Protoplasma 205: 66–73

    Google Scholar 

  • Schmidt W, Thomson K, Butler WL (1977) Cytochromeb in plasma membrane enriched fractions from several photoresponsive organisms. Photochem Photobiol 26: 407–411

    Google Scholar 

  • Segal AW, Wientjes F, Stockley R, Dekker L (1998) Components and organisation of the NADPH oxidase of phagocytic cells, the paradigm for an electron transport chain across the plasma membrane. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer, Dordrecht, pp 69–101

    Google Scholar 

  • Serrano A, Córdoba F, González-Reyes JA, Navas P, Villalba JM (1994) Purification and characterization of two distinct NAD(P)H dehydrogenases from onion (Allium cepa L.) root plasma membrane. Plant Physiol 106: 87–96

    Google Scholar 

  • Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78: 661–669

    Google Scholar 

  • Srivastava M (1995) Genomic structure and expression of the human gene encoding cytochromeb 561, an integral protein of the chromaffin granule membrane. J Biol Chem 270: 22714–22720

    Google Scholar 

  • — (1996)Xenopus cytochromeb 561: molecular confirmation of a general five transmembrane structure and developmental regulation at the gastrula stage. DNA Cell Biol 15: 1075–1080

    Google Scholar 

  • —, Gibson KR, Pollard HB, Fleming PJ (1994) Human cytochromeb 561: a revised hypothesis for conformation in membranes which reconciles sequence and functional information. Biochem J 303: 915–921

    Google Scholar 

  • Takahama U, Oniki T (1992) Regulation of peroxidase-oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant Cell Physiol 33: 379–387

    Google Scholar 

  • Teahan C, Rowe P, Parker P, Totty N, Segal AW (1987) The X-linked chronic granulomatous disease gene codes for the beta-chain of cytochromeb-245. Nature 327: 720–721

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22: 4673–4680

    Google Scholar 

  • Trost P, Foscarini S, Preger V, Bonora P, Vitale L, Pupillo P (1997) Dissecting the diphenylene iodonium-sensitive NAD(P)H:quinone oxidoreductase of zucchini plasma membranes. Plant Physiol 114: 737–746

    Google Scholar 

  • —, Bérczi A, Sparla F, Sponza G, Marzadori B, Asard H, Pupillo P (2000) Purification of cytochromeb-561 from bean hypocotyl plasma membrane: evidence for the presence of two heme centres. Biochim Biophys Acta 1468: 1–5

    Google Scholar 

  • Tsubaki M, Nakayama M, Okuyama E, Ichikawa Y, Hori H (1997) Existence of two heme B centers in cytochromeb 561 from bovine adrenal chromaffin vesicles as revealed by a new purification procedure and EPR spectroscopy. J Biol Chem 272: 23206–23210

    Google Scholar 

  • —, Kobayashi K, Ichise T, Takeuchi F, Tagawa S (2000) Diethylpyrocarbonate abolishes fast electron accepting ability of cytochromeb 561 from ascorbate but does not influence electron donation to monodehydroascorbate radical: identification of the modification sites by mass spectrometric analysis. Biochemistry 39: 3276–3284

    Google Scholar 

  • Van Gestelen P, Asard H, Caubergs RJ (1996) Partial purification of a plasma membrane flavoprotein and NAD(P)H-oxidoreductase activity. Physiol Plant 98: 389–398

    Google Scholar 

  • — — — (1997) Solubilization and separation of a plant plasma membrane NAD(P)H-superoxide-(O2 )-synthase from other NAD(P)H-oxidoreductases. Plant Physiol 115: 543–550

    Google Scholar 

  • Wakefield LM, Cass AEG, Radda GK (1984) Isolation of a membrane protein by chromatofocusing: cytochromeb-561 of the adrenal chromaffin granule. J Biochem Biophys Methods 9: 331–341

    Google Scholar 

  • — — — (1986) Functional coupling between enzymes of the chromaffin granule membrane. J Biol Chem 261: 9739–9745

    Google Scholar 

  • Washko PW, Welch RW, Dhariwal KR, Wabg Y, Leviine M (1992) Ascorbic acid and dehydroascorbic acid analyses in biological samples. Anal Biochem 204: 1–14

    Google Scholar 

  • Widell S, Lundborg T, Larsson C (1982) Plasma membranes from oats by partitioning in an aqueous polymer two-phase system. Plant Physiol 70: 1429–1435

    Google Scholar 

  • —, Caubergs RJ, Larsson C (1983) Spectral characterization of light-reducible cytochrome in a plasma membrane enriched fraction and in other membranes from cauliflower inflorescences. Photochem Photobiol 38: 95–98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asard, H., Kapila, J., Verelst, W. et al. Higher-plant plasma membrane cytochromeb 561: A protein in search of a function. Protoplasma 217, 77–93 (2001). https://doi.org/10.1007/BF01289417

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01289417

Keywords

Navigation