Skip to main content
Log in

Ultrastructural study of different types of callus from leaf expiants ofAesculus hippocastanum L.

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The cell ultrastructure in three types of callus obtained from leaf explants ofAesculus hippocastanum L. has been studied. Remarkable differences have been shown between the cells of the forerunner E1 callus and those of the callus arising from it, according to the culture conditions.

The peculiar characteristics of E1 are the scarcity of intercellular spaces and the occurrence of autophagic vacuoles in the cells.

An embryogenic friable callus (E2) is formed in time when E1 is maintained on solid culture medium. The E2 cells show cytological features typical of a higher metabolic level and contain starch. Diffused middle lamella digestion leads to the detachment of small embryogenic cell aggregates consisting of vacuolated parenchymatous-like cells and small meristematic cells which may be regarded as embryoids initials.

Shaking E1 in the same liquid medium and subsequent culture on solid medium lead to the differentiation of a non-embryogenic callus (NE), whose cells are very large and highly vacuolated, devoid of starch and with organelle-rich cytoplasm. The NE callus shows a high degree of growth, but does not attain embryogenic competence in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

cell

cr :

crystal

cw :

cell wall

d :

dictyosome

er :

endoplasmic reticulum

m :

mitochondrion

mb :

microbody

n :

nucleus

p :

plastid

s :

starch

v :

vacuole

References

  • Armstrong CL, Green CE (1985) Establishment and maintenance of friable embryogenic maize callus and the involvement of L-proline. Planta 164: 207–214

    Google Scholar 

  • Barwale UB, Kerns HR, Widholm JM (1986) Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta 167: 473–481

    Google Scholar 

  • Benbadis A (1973) Analyse des aptitudes embriogènes de divers types de cellules isolées deDaucus carota L. Bull Soc Bot Fr Mém 120: 223–234

    Google Scholar 

  • Button J, Kochba J, Bornman CH (1974) Fine structure of embryoid development from embryogenic ovular callus of “Shamouti orange” (Citrus sinensis Osb.). J Exp Bot 25: 446–457

    Google Scholar 

  • Cronshaw J (1964) Crystal containing bodies of plant cells. Protoplasma 59: 318

    Google Scholar 

  • Dameri RM, Profumo P, Gastaldo P, Caffaro L (1986) Callus formation and embryogenesis with leaf explants ofAesculus hippocastanum L. J Plant Physiol 126: 93–96

    Google Scholar 

  • Davey MR, Street HE (1971) Studies on the growth in culture of plant cells IX. Additional features of the fine structure ofAcer pseudoplatanus L. cells cultured in suspension. J Exp Bot 22: 90–95

    Google Scholar 

  • Dennis DT, Miernyk JA (1982) Compartimentation of nonphotosynthetic carbohydrate metabolism. Ann Rev Plant Physiol 33: 27–50

    Google Scholar 

  • Dickinson HG, Helsop-Harrison J (1970) The ribosome cycle, nucleoli, and cytoplasm nucleoids in the meiocytes ofLilium. Protoplasma 69: 187–200

    Google Scholar 

  • Dos Santos AVP, Cutter EG, Davey MR (1983) Origin and development of somatic embryos inMedicago sativa L. (Alfalfa). Protoplasma 117: 107–115

    Google Scholar 

  • Dunwell JM, Sunderland N (1974) Pollen ultrastructure in anther cultures ofNicotiana tabacum. II. Changes associated with embryogenesis. J Exp Bot 74: 363–373

    Google Scholar 

  • Hall JL, Flowers TI, Roberts RM (1982) Plant cell structure and metabolism. Longman, London New York

    Google Scholar 

  • Halperin W, Jensen WA (1967) Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J Ultrastruct Res 18: 428–443

    PubMed  Google Scholar 

  • —,Wetherell DF (1964) Adventive embryony in tissue cultures of the wild carrot,Daucus carota. Amer J Bot 51: 274–283

    Google Scholar 

  • Huang AHC, Trelease RN, Moore TS Jr (1983) Plant peroxisomes. Academic Press, New York London

    Google Scholar 

  • Kadej F, Kadej A (1981) Ultrastructural organization of the tomato embryosac at the time of fertilization. Acta Soc Bot Pol 50: 139–142

    Google Scholar 

  • Kamo KK, Becwar MR, Hodges TK (1985) Regeneration ofZea mays from embryogenic callus. Bot Gaz 146: 327–334

    Google Scholar 

  • Karlsson SB, Vasil IK (1986) Morphology and ultrastructure of embryogenic cell suspension cultures ofPanicum maximum (Guinea grass) andPennisetum purpureum (Napier grass). Amer J Bot 73: 894–901

    Google Scholar 

  • Kochba J, Spiegel-Roy P, Neuman H, Saad S (1978) Stimulation of embryogenesis in citrus ovular callus by ABA, Ethepon, CCC and Alar and its suppression by GA3. Z Pflanzenphysiol 89: 427–432

    Google Scholar 

  • Konar RN, Thomas E, Street HE (1972) Origin and structure of embryoids arising from epidermal cells of the stem ofRanunculus sceleratus L. J Cell Biol 11: 77–93

    Google Scholar 

  • Kononowitcz H, Kononowitcz AK, Janick J (1984) Asexual embryogenesis via callus ofTheobroma cacao L. Z Pflanzenphysiol 113: 347–358

    Google Scholar 

  • Lu C, Vasil IK (1981) Somatic embryogenesis and plant regeneration from freely suspended cells and cell groups ofPanicum maximum Jacq. Ann Bot 48: 543–548

    Google Scholar 

  • Mackenzie A, Helsop-Harrison J, Dickinson HG (1967) Elimination of ribosomes during meiotic profase. Nature 215: 997–999

    PubMed  Google Scholar 

  • Nabors MW, Heyser JW, Dykes ThA, de Mott KJ (1983) Longduration, high frequency plant regeneration from cereal tissue cultures. Planta 157: 385–391

    Google Scholar 

  • Profumo P, Dameri RM, Cremona Orsino I (1976) Frammenti cotiledonari diAesculus hippocastanum L. coltivatiin vitro. Primi dati sul comportamento dell'amido e dell'escina. Giorn Bot Ital 110: 155–171

    Google Scholar 

  • —,Dameri Orsino RM, Modenesi P (1980) Aescin content in calluses from expiant ofAesculus hippocastanum cotyledons growthin vitro. Giorn Bot Ital 114: 25–28

    Google Scholar 

  • —,Gastaldo P, Dameri RM, Caffaro L (1986) Histological study of calli and embryoids of leaf expiants ofAesculus hippocastanum L. J Plant Physiol 126: 97–103

    Google Scholar 

  • Radojević L, Vujičić JR, Nešković M (1975) Embryogenesis in tissue culture inCorylus avellana L. Z Pflanzenphysiol 77: 33–41

    Google Scholar 

  • —,Zylbergers L, Kovoor J (1980) Etude ultrastructurale des embryons androgénétiques d'Aesculus hippocastanum L. Z Pflanzenphysiol 98: 255–261

    Google Scholar 

  • Rascio N, Casadoro G (1985) Effects of light intensity on the E 283 B olive necrotic maize mutant. Cytobios 42: 179–191

    Google Scholar 

  • — —,Ramina A, Masia A (1985) Structural and biochemical aspects of peach fruit abscission (Prunus persica L. Batsch). Planta 164: 1–11

    Google Scholar 

  • —,Orsenigo M, Arboit D (1976) Prolamellar body transformation with increasing cell age in the maize leaf. Protoplasma 90: 253–263

    Google Scholar 

  • Rengel Z, Jelaska SJ (1986) Somatic embryogenesis and plant regeneration from seedling tissues ofHordeum vulgare L. J Plant Physiol 124: 385–392

    Google Scholar 

  • Sangwan RS (1986) Formation and cytochemistry of nuclear vacuoles during meiosis inDatura. Eur J Cell Biol 40: 210–218

    Google Scholar 

  • Sexton R, Jameson GGC, Allan MHIL (1977) An ultrastructural study of abscission zone cells with special reference to the mechanisms of enzyme secretion. Protoplasma 91: 369–387

    Google Scholar 

  • Sharp WR, Sondahl MR, Caldas LS, Maraffa SB (1980) The physiology ofin vitro asexual embryogenesis. Hortic Rev 2: 268–310

    Google Scholar 

  • Smith SM, Street HE (1974) The decline of embryogenic potential as callus and suspension cultures of carrot (Daucus carota L.) are serially subcultured. Amer J Bot 38: 223–241

    Google Scholar 

  • Sutton-Jones B, Street HE (1968) Studies on the growth in culture of plant cells. III. Changes in fine structure during the growth ofAcer pseudoplatanus L. cells in suspension culture. J Exp Bot 19: 114–118

    Google Scholar 

  • Thomas E, Konar RN, Street HE (1972) The fine structure of the embryogenic callus ofRanunculus sceleratus. J Cell Sci 11: 95–109

    PubMed  Google Scholar 

  • — — — (1973) Fine structural studies of embryogenesis in a callus ofRanunculus sceleratus. Bull Soc Bot Fr Mém 120: 207–214

    Google Scholar 

  • Thorpe TA, Joy IV RW, Leung DWM (1986) Starch turnover in shoot-forming tobacco callus. Physiol Plant 66: 58–62

    Google Scholar 

  • Vasil V, Vasil IK (1982) Characterization of an embryogenic cell suspension culture derived from cultured inflorescences ofPennisetum americanum (Pearl Millet,Gramineae). Amer J Bot 69: 1441–1449

    Google Scholar 

  • — — (1986) Plant regeneration from friable embryogenic callus and cell suspension cultures ofZea mays L. J Plant Physiol 124: 399–408

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Profumo, P., Gastaldo, P. & Rascio, N. Ultrastructural study of different types of callus from leaf expiants ofAesculus hippocastanum L.. Protoplasma 138, 89–97 (1987). https://doi.org/10.1007/BF01281017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01281017

Keywords

Navigation