Skip to main content
Log in

Generalized Rayleigh-Schrödinger perturbation theory in matrix form

  • Review
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Thenested summation symbols (NSS) formalism is used as a starting point to formulate a completely general Rayleigh-Schrödinger perturbation theory (RSPT) scheme. In order to make the theoretical framework practical from a computational point of view, the matrix form for the theory is given in every case. As a result, an algorithmic iterative recipe to compute eigenvalue and eigenvector corrections up to any order is described. Degenerate systems are also treated. At the same time the described procedure allows the computation of eigenvalue and eigenvector derivatives with respect to a set of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Carbó and E. Besalú, J. Math. Chem. 13 (1993) 331.

    Google Scholar 

  2. R. Carbó and E. Besalú, Computers & Chemistry, in press.

  3. R. Carbó and E. Besalú, Adv. Quant. Chem. 24 (1992) 115.

    Google Scholar 

  4. R. Carbó, Theor. Chim. Acta 17 (1970) 74;

    Google Scholar 

  5. R. Carbó, Rev. Roum. Chim. 16 (1971) 1155;

    Google Scholar 

  6. R. Carbó and R. Gallifa, Nuovo Cimento 10 (1972) 576;

    Google Scholar 

  7. R. Carbó, Int. J. Quant. Chem. 6 (1972) 609;

    Google Scholar 

  8. R. Carbó and R. Gallifa, Ann. Física 68 (1972) 197;

    Google Scholar 

  9. R. Carbó and R. Gallifa, Nuovo Cimento 17 (1973) 46;

    Google Scholar 

  10. R. Carbó and R. Gallifa, Ann. Física 69 (1973) 331.

    Google Scholar 

  11. D.H. Menzel (ed.),Fundamental Formulas of Physics. Vol. 1 (Dover, New York, 1960);

    Google Scholar 

  12. M.R. Spiegel,Mathematical Handbook of Formulas and Tables (McGraw-Hill, New York, 1968).

    Google Scholar 

  13. (a) A. Dalgarno, Proc. Roy. Soc. A238 (1956) 269;

    Google Scholar 

  14. (b) D. Fu-Tai Tuan, J. Chem. Phys. 46 (1967) 2435;

    Google Scholar 

  15. (c) D. Fu-Tai Tuan, J. Chem. Phys. 54 (1971) 4631;

    Google Scholar 

  16. (d) W. Kutzelnigg, Theor. Chim. Acta 83 (1992) 263.

    Google Scholar 

  17. I.N. Levine,Quantum Chemistry (Prentice-Hall, New Jersey, 1991).

    Google Scholar 

  18. S. Califano,Vibrational States (Wiley, London, 1976);

    Google Scholar 

  19. D.M. Hirst,A Computational Approach to Chemistry (Blackwell, Oxford, 1990).

    Google Scholar 

  20. J.O. Hirschfelder, Int. J. Quant. Chem. 3 (1969) 731;

    Google Scholar 

  21. H.J. Silverstone, J. Chem. Phys. 54 (1971) 2325;

    Google Scholar 

  22. H.J. Silverstone and T.T. Holloway, Phys. Rev. A4 (1971) 2191.

    Google Scholar 

  23. R. Carbó and J.A. Hernández,Introductión a la Teoría de Matrices (Ed. Alhambra, S.A. Madrid, 1983).

    Google Scholar 

  24. J.O. Hirschfelder and Ph.R. Certain, J. Chem. Phys. 60 (1974) 1118.

    Google Scholar 

  25. L. Pauling and E.B. Wilson, jr.,Introduction to Quantum Mechanics (McGraw-Hill, New York, 1935);

    Google Scholar 

  26. H. Eyring, J. Walter and G.E. Kimball,Quantum Chemistry (Wiley, New York, 1948);

    Google Scholar 

  27. C.H. Wilcox (ed.),Perturbation Theory and its Applications in Quantum Mechanics (Wiley, New York, 1966);

    Google Scholar 

  28. T. Kato,Perturbation Theory for Linear Operators (Springer, Berlin, 1966);

    Google Scholar 

  29. F.L. Pilar,Elementary Quantum Chemistry (McGraw-Hill, New York, 1968);

    Google Scholar 

  30. F. Rellich,Perturbation Theory of Eigenvalue Problems (Gordon and Breach, New York, 1969);

    Google Scholar 

  31. A. Szabo and N.S. Ostlund,Modern Quantum Chemistry (McGraw-Hill, New York, 1989);

    Google Scholar 

  32. G.A. Arteca, F.M. Fernández and E.A. Castro,Large Order Perturbation Theory and Summation Methods in Quantum Mechanics, Lecture Notes in Chemistry, Vol. 53 (Springer, Berlin, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A contribution of the “Grup de Quimica Quàntica de l'Institut d'Estudis Catalans”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besalú, E., Carbó, R. Generalized Rayleigh-Schrödinger perturbation theory in matrix form. J Math Chem 15, 397–406 (1994). https://doi.org/10.1007/BF01277573

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01277573

Keywords

Navigation