Skip to main content
Log in

Perturbation theory in the framework of the improved asymptotic iteration method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Based on the concepts of the improved asymptotic iteration method, we modify the original asymptotic iteration method for perturbation problems previously published. In our computations, the proposed method proves to be significantly faster than the previous perturbative method as we make explicit in the examples given in this work. Our procedure enables us to compute the corrections to the energy eigenvalues to an order as high as 15 in numeric computations, and of order as high as 5 in symbolic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

A Mathematica notebook generated during the current study is available from the corresponding author on reasonable request. The manuscript has associated data in a data repository

Notes

  1. This condition is also named as: quantization condition or termination condition [4, 5, 8].

  2. A Mathematica notebook that generates the data of Table 1 is available as online supplementary material. Also, this notebook is available from the corresponding author.

  3. For the complex cubic anharmonic oscillator, from the numerical results of Table 5, we infer that in the analytical expression \(E_n^{(4)}\) given in Ref. [3] a global minus sign is missing (see also Table 6).

  4. For the perturbed Pöschl–Teller potential we calculated the analytical expression for the corrections of order \(i=5\), but for simplicity we do not show this in the tables because of the size of the expression. If the readers are interested, they can email us and we can gladly share the expression.

  5. We have noted an error in Eq. (34) of Ref. [3] for the expression they call \(u_0\). We further investigated this point and we concluded that this expression must have a global minus sign.

  6. We noted that our analytical expressions are valid starting from \(n=0\) as those of Ref. [6], although they comment in a few places that some of their expressions are valid only for \(n=1,2,3,\ldots\).

  7. In this section, we follow Ref. [7], and therefore, the Schrödinger equation has an additional factor of (1/2) multiplying the second derivative, compared with the conventions used in the previous sections, but in contrast to Ref. [7], we denote the independent variable by x instead of r. Also to avoid confusion, we denote by \(\epsilon\) the parameter multiplying the factor \(x^2\) in the potential instead of \(\lambda\) as in Ref. [7].

  8. We use Mathematica 12.0 in an AMD Ryzen 5 six core processor to 4200 MHz with 16 GB of RAM.

References

  1. D.J. Griffiths, Introduction to Quantum Mechanics, Second Edition. (Pearson Prentice Hall, Hoboken, 2005)

    Google Scholar 

  2. J. Killingbeck, Rep. Prog. Phys. 40, 963 (1977)

    Article  CAS  ADS  Google Scholar 

  3. H. Ciftci, R.L. Hall, N. Saad, Phys. Lett. A 340, 388 (2005)

    Article  CAS  ADS  Google Scholar 

  4. H. Ciftci, R.L. Hall, N. Saad, J. Phys. A 36, 11807 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  5. H.T. Cho, A.S. Cornell, J. Doukas, W. Naylor, Class. Quant. Grav. 27, 155004 (2010)

    Article  ADS  Google Scholar 

  6. H. Ciftci, H.F. Kisoglu, Chin. Phys. B 25, 030201 (2016)

    Article  Google Scholar 

  7. T. Barakat, J. Phys. A Math. Gen. 39, 823 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  8. H.T. Cho, A.S. Cornell, J. Doukas, T.R. Huang, W. Naylor, Adv. Math. Phys. 2012, 281705 (2012)

    Article  Google Scholar 

  9. E. Berti, V. Cardoso, A.O. Starinets, Class. Quant. Grav. 26, 163001 (2009)

    Article  ADS  Google Scholar 

  10. A. Baricz, J. Vesti, M. Vuorinen, Ann. Univ. Marie Curie Sklodowska LXV(2), 1 (2011)

    Google Scholar 

  11. P.M. Radmore, J. Phys. A Math. Gen. 13, 173 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  12. C.M. Bender, L.M.A. Bettencourt, Phys. Rev. Lett. 77, 4114 (1996)

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  13. J. Zamastil, J. Cizek, L. Skala, Ann. Phys. 276, 39 (1999)

    Article  CAS  ADS  Google Scholar 

  14. L.V. Chebotarev, Ann. Phys. 273, 114 (1999)

    Article  CAS  ADS  Google Scholar 

  15. T. Hatsuda, T. Kunihiro, T. Tanaka, Phys. Rev. Lett. 78, 3229 (1997)

    Article  CAS  ADS  Google Scholar 

  16. E. Delabaere, D.T. Trinh, J. Phys. A Math. Gen. 33, 8771 (2000)

    Article  CAS  ADS  Google Scholar 

  17. C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40, 2201 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  18. C.M. Bender, K.A. Milton, Phys. Rev. D 57, 3595 (1998)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  19. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  20. O. Mustafa, M. Znojil, J. Phys. A Math. Gen. 35, 8929 (2002)

    Article  ADS  Google Scholar 

  21. U. Roy, S. Ghosh, P.K. Panigrahi, D. Vitali, Phys. Rev. A 80, 5 (2005)

    Google Scholar 

  22. L.G. Guimaraes, J. Phys. A Math. Gen. 28, L233 (1995)

    Article  ADS  Google Scholar 

  23. E.J. Austin, Mol. Phys. 40, 893 (1980)

    Article  CAS  ADS  Google Scholar 

  24. E.R. Vrscay, Phys. Rev. A 31, 2054 (1985)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  25. J. Banerjee, Proc. R. Soc. A 368, 155 (1979)

    CAS  ADS  Google Scholar 

  26. E. Eichten, E. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D 17, 3090 (1978)

    Article  CAS  ADS  Google Scholar 

  27. S. Skupsky, Phys. Rev. A 21, 1316 (1980)

    Article  CAS  ADS  Google Scholar 

  28. R. Cauble, M. Blaha, J. Davis, Phys. Rev. A 29, 3280 (1984)

    Article  CAS  ADS  Google Scholar 

  29. J.E. Avron, Ann. Phys. 131, 73 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by CONAHCYT México, SNI México, EDI IPN, COFAA IPN, and Research Project IPN SIP 20240245. J. Jaimes-Najera appreciates the support of a scholarship awarded by CONAHCYT México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. López-Ortega.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaimes-Najera, J., López-Ortega, A. Perturbation theory in the framework of the improved asymptotic iteration method. Eur. Phys. J. Plus 139, 259 (2024). https://doi.org/10.1140/epjp/s13360-024-04991-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04991-w

Navigation