Skip to main content
Log in

Arrangement of F-actin and microtubules in the pseudopodia ofCryptochlora perforans (Chlorarachniophyta)

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The distribution of actin and the arrangement of microtubules within the filopodia of amoeboid stages of Chlorarachniophyta were studied inCryptochlora perforans by indirect immunofluorescence. Actin is located along the whole pseudopodium, but at different concentrations. Microtubules run like coiled cables throughout the length of the pseudopodium. At the leading edges the pseudopodium frequently appears fan-shaped and the microtubules then show a spread-out arrangement, but they do not reach the cytoplasm front. Colchicine inhibited particle motility in the filopodia. The particle transport seems to be insensitive to cytochalasin D, but cells contracted their filopodia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey GB, Day DB, Gasque JW (1985) Rapid polymerization ofEntamoeba histolytica actin induced by interaction with target cells. J Exp Med 162: 546–558

    PubMed  Google Scholar 

  • — —, McCoomer NE (1992)Entamoeba motility: dynamics of cytoplasmic streaming, locomotion and translocation of surfacebound particles, and organization of the actin cytoskeleton inEntamoeba invadens. J Protozool 39: 267–272

    PubMed  Google Scholar 

  • Baumann O, Murphy DB (1995) Microtubule-associated movement of mitochondria and small particles inAcanthamoeba castellanii. Cell Motil Cytoskeleton 32: 305–317

    PubMed  Google Scholar 

  • Beutlich A, Schnetter R (1993) The life cycle ofCryptochlora perforans (Chlorarachniophyta). Bot Acta 106: 441–447

    Google Scholar 

  • Borstelmann B, Schnetter R (1992) Ultrastrukturelle Untersuchungen anCryptochlora perforans (Chlorarachniophyta). In: Haschke H-P, Schnarrenberger C (eds) Botanikertagung, Berlin, p 424

    Google Scholar 

  • Bowser SS, DeLaca TE, Rieder CL (1986) Novel extracellular matrix and microtubule cables associated with pseudopodia ofAstrammina rara, a carnivorous antarctic foraminifer. J Ultrastruct Mol Struct Res 94: 149–160

    PubMed  Google Scholar 

  • —, Travis JL, Rieder CL (1988) Microtubules associate with actincontaining filaments at discrete sites along the ventral surface ofAllogromia reticulopods. J Cell Sci 89: 297–307

    PubMed  Google Scholar 

  • —, Alexander SP, Stockton WL, DeLaca TE (1992) Extracellular matrix augments mechanical properties of pseudopodia in the carnivorous foraminiferanAstrammina rara: role in prey capture. J Protozool 39: 724–732

    Google Scholar 

  • Button E, Shapland C, Lawson D (1995) Actin, its associated proteins and metastasis. Cell Motil Cytoskeleton 30: 247–251

    PubMed  Google Scholar 

  • Calderón-Sáenz E, Schnetter R (1987)Cryptochlora perforons, a new genus and species of algae (Chlorarachniophyta), capable of penetrating dead algal filaments. Plant Syst Evol 158: 69–71

    Google Scholar 

  • — — (1989) Morphology, biology, and systematics ofCryptochlora perforans (Chlorarachniophyta), a phagotrophic marine alga. Plant Syst Evol 163: 165–176

    Google Scholar 

  • Capuccinelli P, Ashworth JM (1976) The effect of inhibitors of microtubule and microfilament function on the cellular slime mouldDictyostelium discoideum, Exp Cell Res 103: 387–393

    PubMed  Google Scholar 

  • DiTella M, Feiguin F, Morfini G, Cáceres A (1994) Microfilament-associated growth cone component depends upon Tau for its intracellular localization. Cell Motil Cytoskeleton 29: 117–130

    PubMed  Google Scholar 

  • Edson KJ, Lim S-S, Borisy GG, Letourneau PC (1993) FRAP analysis of the stability of the microtubule population along the neuntes of chick sensory neurons. Cell Motil Cytoskeleton 25: 59–72

    PubMed  Google Scholar 

  • Geitler L (1930) Ein grünes Filarplasmodium und andere neue Protisten. Arch Protistenk 69: 616–635

    Google Scholar 

  • Goslin K, Birgbauer E, Banker G, Solomon F (1989) The role of cytoskeleton in organizing growth cones: a microfilament-associated growth cone component depends upon microtubules for its localization. J Cell Biol 109: 1621–1631

    PubMed  Google Scholar 

  • Grell KG (1991)Corallomyxa nipponica n.sp. and the phylogeny of plasmodial protists. Arch Protistenk 140: 303–320

    Google Scholar 

  • Grolig F (1990) Actin-based organelle movements in interphaseSpirogyra. Protoplasma 155: 29–42

    Google Scholar 

  • Guhl B, Roos U-P (1994) Microtubule centers and the interphase microtubule cytoskeleton in amoebae of the cellular slime mold (Mycetozoans)Acytostelium leptosomum andProtostelium mycophaga. Cell Motil Cytoskeleton 28: 45–58

    PubMed  Google Scholar 

  • Häuber MM, Müller SB, Speth V, Maier U-G (1994) How to evolve a complex plastid? A hypothesis. Bot Acta 107: 383–386

    Google Scholar 

  • Hauser M, Lindenblatt J, Hülsmann N (1989) The cytoskeleton ofReticulomyxa filosa reticulopodia contains Glu-tubulin as a main component. Eur J Protistol 25: 145–157

    Google Scholar 

  • Hibberd DJ, Norris RE (1984) Cytology and ultrastructure ofChlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). J Phycol 20: 310–330

    Google Scholar 

  • Ishida K-I, Hara Y (1994) Taxonomic studies on the Chlorarachniophyta. I.Chlorarachnion globosum sp.nov. Phycologia 33: 351–358

    Google Scholar 

  • —, Nakayama T, Hara Y (1996) Taxonomic studies on the Chlorarachniophyta. II. Genetic delimitation of the chlorarachniophytes and description ofGymnochlora stellata gen. et sp. nov. andLotharella gen. Nov. Phycol Res 44: 37–45

    Google Scholar 

  • Keller HU, Niggli V (1993) Colchicine-induced stimulation of PMN motility related to cytoskeletal changes in actin, α-actinin, and myosin. Cell Motil Cytoskeleton 25: 10–18

    PubMed  Google Scholar 

  • Koonce MP, Schliwa M (1986) Reactivation of organelle movements along the cytoskeletal framework of a giant freshwater ameba. J Cell Biol 103: 605–612

    PubMed  Google Scholar 

  • —, Euteneuer U, McDonald KL, Menzel D, Schliwa M (1986a) Cytoskeletal architecture and motility in a giant freshwater amoeba,Reticulomyxa. Cell Motil Cytoskeleton 6: 521–533

    PubMed  Google Scholar 

  • — —, Schliwa M (1986b)Reticulomyxa: a new model system of intracellular transport. J Cell Sci Suppl 5: 145–159

    PubMed  Google Scholar 

  • Lackie JM (1985) Cell movement and cell behaviour. Allen and Unwin, London

    Google Scholar 

  • La Claire II JW (1987) Microtubule cytoskeleton in intact and wounded coenocytic green algae. Planta 171: 30–42

    Google Scholar 

  • Marsh L, Letourneau PC (1984) Growth of neuntes without filopodial or lamellipodial activity in the presence of cytochalasin B. J Cell Biol 99: 2041–2047

    PubMed  Google Scholar 

  • Okabe S, Hirokawa N (1990) Turnover of fluorescently labelled tubulin and actin in the axon. Nature 343: 479–482

    PubMed  Google Scholar 

  • Rubino S, Fighetti M, Unger E, Cappuccinelli P (1984) Location of actin, myosin, and microtubular structures during directed locomotion ofDictyostelium amebae. J Cell Biol 98: 382–390

    PubMed  Google Scholar 

  • Rupp G, Bowser SS, Mannella CA, Rieder CL (1986) Naturally occurring tubulin-containing paracrystals inAllogromia: immunocytochemical identification and functional significance. Cell Motil Cytoskeleton 6: 363–375

    PubMed  Google Scholar 

  • Stadelmann EJ, Kinzel H (1972) Vital staining of plant cells. In: Prescott DM (ed) Methods in cell physiology, vol 5. Academic Press, New York, pp 325–372

    Google Scholar 

  • Travis JL, Bowser SS (1986a) A new model of reticulopodial motility and shape: evidence for a microtubule-based motor and an actin skeleton. Cell Motil Cytoskeleton 6: 2–14

    PubMed  Google Scholar 

  • — — (1986b) Microtubule-dependent reticulopodial motility: is there a role for actin? Cell Motil Cytoskeleton 6: 146–152

    PubMed  Google Scholar 

  • Yumura S, Mori H, Fukui Y (1984) Localization of actin and myosin for the study of ameboid movement inDictyostelium using improved immunofluorescence. J Cell Biol 99: 894–899

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietz, C., Schnetter, R. Arrangement of F-actin and microtubules in the pseudopodia ofCryptochlora perforans (Chlorarachniophyta). Protoplasma 193, 82–90 (1996). https://doi.org/10.1007/BF01276637

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01276637

Keywords

Navigation