Skip to main content
Log in

Control theory of metabolic channelling

  • Metabolic Regulation: Theoretical Basis
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Various factors appear to control muscle energetics, often in conjunction. This calls for a quantitative approach of the type provided by Metabolic Control Analysis for intermediary metabolism and mitochondrial oxidative phosphorylation. To the extent that direct transfer of high energy phosphates and spatial organization plays a role in muscle energetics however, the standard Metabolic Control Theory does not apply, neither do its theorems regarding control.

This chapter develops the Control Theory that does apply to the muscle system. It shows that direct transfer of high energy phosphates bestows a system with enhanced control: the sum of the control exerted by the participating enzymes on the flux of free energy form the mitochondrial matrix to the actinomyosin may well exceed the 100% mandatory for ideal metabolic pathways. It is also shown how sequestration of high energy phosphates may allow for negative control on pathway flux. The new control theory gives methods functionally to diagnose the extent to which channelling and metabolite sequestration occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Higgins JJ: Dynamics and control in cellular reactions. In: B Chance, RW Estabrook, JR Williamson (eds) Control of Energy Metabolism. Academic Press, New York, 1965, pp 13–46

    Google Scholar 

  2. Kacser H, Burns JA: The control of the flux. In: DD Davies (ed.) Rate Control of Biological Processes. Cambridge Univ. Press, London, 1973, pp 65–104

    Google Scholar 

  3. Kacser H, Burns JA: Molecular democracy: who shares the controls? Biochem Soc Trans 7: 1149–1160, 1979

    PubMed  Google Scholar 

  4. Savageau MA: The behavior of intact biochemical control systems. Current Topics in Cellular Regulation 6: 63–130, 1972

    Google Scholar 

  5. Heinrich R, Rapoport TA: A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Europ J Biochem 42: 89–95, 1974

    PubMed  Google Scholar 

  6. Heinrich R, Rapoport TA: Mathematical analysis of multi-enzyme systems: II. Steady state and transient control. Bio Systems 7: 130–136, 1975

    PubMed  Google Scholar 

  7. Burns JA, Cornish-Bowden A, Grown AK, Heinrich R, Kacser H, Porteous JW, Rapoport SM, Rapoport T, Stucki JW, Tager JM, Wanders RJA, Westerhoff HV: Control analysis of metabolic systems, Trends Biochem Sci 10: 16, 1985

    Google Scholar 

  8. Kacser H, Sauro HM, Acerenza L: Enzyme-enzyme interactions and control analysis. The case of non-additivity: monomer-oligomer associations. Eur J Biochem 187: 481–491, 1990

    PubMed  Google Scholar 

  9. Fell DA, Sauro HM: Metabolic control analysis. The effects of high enzyme concentrations. Eur J Biochem 192: 183–187, 1990

    PubMed  Google Scholar 

  10. Kholodenko BN, Lyubarev AE, Kurganov BI: Control of metabolic flux in a system with high enzyme concentrations and moietyconserved cycles. The sum of the flux control coefficients can drop significantly below unity. Eur J Biochem 210: 147–153, 1992

    PubMed  Google Scholar 

  11. Kholodenko BN, Westerhoff HV: Metabolic channelling and control of the flux. FEBS Lett 320: 71–74, 1993

    PubMed  Google Scholar 

  12. Heinrich R, Rapoport SM, Rapoport TA: Metabolic regulation and mathematical models. Prog Biophys Mol Biol 32: 1–83, 1977

    PubMed  Google Scholar 

  13. Groen AK, Wanders RJA, Westerhoff HV, Van der Meer R, Tager JM: Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257: 2754–2757, 1982

    PubMed  Google Scholar 

  14. Reder C: Metabolic control theory: a structural approach. J Theor Biol 135: 175–201, 1988

    PubMed  Google Scholar 

  15. Kholodenko BN: Control of molecular transformations in multienzyme systems: quantitative theory of metabolic regulation. Mol Biol (USSR) 22: 1238–1256, 1988 (English transl, 22: 990–1000)

    Google Scholar 

  16. Fell DA, Sauro HM: Metabolic control and its analysis: additional relationships between elasticities and control coefficients. Eur J Biochem 148: 555–561, 1985

    PubMed  Google Scholar 

  17. Cascante M, Franco R, Canela EI: Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. II. Complex systems. Mathem Biosci 94: 289–309, 1999

    Google Scholar 

  18. Westerhoff HV, Hofmeyr J-H S, Kholedenko BN: Getting to the inside of cells using metabolic control analysis. Biophys Chem, 1993 (in press)

  19. Srere PA: Complexes of sequential metabolic enzymes. Ann Rev Bioch 56: 89–124, 1987

    Google Scholar 

  20. Srere PA, Ovadi J: Enzyme-enzyme interactions and their metabolic role. FEBS Lett 268: 360–364, 1989

    Google Scholar 

  21. Welch GR, Clegg JS, eds: The organization of cell metabolism. New York, Plenum Press, 1986

    Google Scholar 

  22. Clegg JS: Cellular infrastructure and metabolic organization. In: Current Topics in Cellular Regulation 33: 3–14, 1992

  23. Wallimann T, Wyss, M, Brdiczka D, Nicolay K, Eppenberger HM: Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochemical J 281: 21–40, 1992.

    Google Scholar 

  24. Srivastava DK, Bernard SA: Biophysical chemistry of metabolic reaction sequences in concentrated enzyme solution and in the cell. Ann Rev of Biophys and Biophys Chem 16: 175–204, 1987

    Google Scholar 

  25. Postma PW, Lengeler JW: Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiol Rev 49: 232–269

  26. Skulachev VP: Membrane bioenergetics. Springer, Berlin, 1988

    Google Scholar 

  27. Kell DB, Westerhoff HV: Catalytic facilitation and membrane bioenergetics. In: GR Welch (ed.). Organized Multienzyme Systems. Academic Press, New York, 1985, pp 63–138

    Google Scholar 

  28. Gellerich FN, Khuchua ZA, Kuznetsov AV: Influence of the mitochondrial outer membrane and the binding of creatine kinase to the mitochondrial inner membrane on the compartmentation of adenine nucleotides in the intermembrane space of rat liver mitochondria. Biochim Biophys Acta 1140: 327–334, 1993

    PubMed  Google Scholar 

  29. Saks VA, Rosenstraukh LV, Smirnov VN, Chazov EI: Role of creatine phosphokinase in cellular function and metabolism. Can J Physiol Pharmacol 56: 691–706, 1978

    PubMed  Google Scholar 

  30. Saks VA, Vasileva E, Belicova Yu O, Kuznetsov AV, Lyapina S, Petrova L, Perov NA: Retarded diffusion of ADP in cardiomyocites: possible role of mitochondrial outer membrane and the creatine kinase in cellular regulation of oxidative phosphorylation. Biochim Biophys Acta 1144: 134–148, 1993

    PubMed  Google Scholar 

  31. Gellerich FN: The role of adenylate kinase in dynamic compartmentation of adenine nucleotides in the intermembrane space of rat heart mitochondria. FEBS Lett 297: 55–58, 1992

    PubMed  Google Scholar 

  32. Wyss, M, Wallimann T: Metabolite channelling in aerobic energy metabolism. J Theor Biol 158: 129–132, 1992

    PubMed  Google Scholar 

  33. Sauro HM, Kacser H: Enzyme-enzyme interactions and control analysis. The case of non-independence: heterologous associations. Eur J Biochem 187: 493–500, 1990

    PubMed  Google Scholar 

  34. Westerhoff HV, Kell DB: A control theoretical analysis of inhibitor titration assays of metabolic channelling. Comm Mol Cell Biophys 5: 57–107, 1988

    Google Scholar 

  35. Easterby JS: Temporal analysis of the transition between steady states. In: A Cornish-Bowden, ML Cardenas (eds) Control of Metabolic Processes, pp 291–292, Plenum Press, New York, 1990

    Google Scholar 

  36. Kell DB, Westerhoff HV: In: PA Srere, ME Jones, CK Mathews (eds) Structural and Organizational Aspects of Metabolic Regulation, pp 273–289, Wiley-Liss, New York, 1990

    Google Scholar 

  37. Schuster S, Heinrich R: The definitions of metabolic control analysis revisited. BioSystems 27: 1–15, 1992

    PubMed  Google Scholar 

  38. Westerhoff HV, Van Dam K: Thermodynamics and Control of Biological Free-Energy Transduction. Elsevier, Amsterdam, 1987

    Google Scholar 

  39. Giersch C: Control analysis of metabolic networks. 1. Homogeneous functions and the summation theorems for control coefficients. Eur J Biochem 174: 509–513, 1988

    PubMed  Google Scholar 

  40. Kholodenko BN, Westerhoff HV: 1992. In: Mazat JP, Schuster S, Rigoulet M (eds) Modern Trends in BioThermoKinetics. Proc 5th BTK Meeting, Bordeaux. Plenum, New York and London, in press

    Google Scholar 

  41. Yanofsky C: Tryptophan synthetase ofE. coli: a multifunctional, multicomponent enzyme. Biochim Biophys Acta 1000: 133–137, 1989

    PubMed  Google Scholar 

  42. Gutfreund H, Chock PB: Substrate channelling among glycolytic enzymes — fact or fiction. J Theor Biol 152: 117–121, 1991

    PubMed  Google Scholar 

  43. Wu X, Gutfreund H, Lakatos S, Chock PB: Substrate channelling in glycolysis: a phantom phenomenon. Proc Natl Acad Sci USA 88: 497–501, 1991

    PubMed  Google Scholar 

  44. Brooks SPJ, Storey KB: Re-evaluation of the glycerol-3-phosphate dehydrogenase/L-lactate dehydrogenase enzyme system. Evidence against the direct transfer of NADH between active sites. Biochem J 278: 875–881, 1991

    PubMed  Google Scholar 

  45. Smolen P, Keizer J: Kinetics and thermodynamics of metabolite transfer between enzymes. Biophys Chem 38: 241–263, 1990

    PubMed  Google Scholar 

  46. Ovady J: Physiological significance of metabolic channelling. J Theor Biol 152: 1–22, 1991

    Google Scholar 

  47. Kholodenko BN: Control theory of ‘non-classical’ enzyme systems and methods for the study of metabolic channelling. Biochemistry (USSR) 58: 512–528, 1993

    Google Scholar 

  48. Van Dam K, Van der Vlag J, Kholodenko BN, Westerhoff HV: The sum of the control coefficients of all enzymes on the flux through a group-transfer pathway can be as high as two. Eur J Biochem 212: 791–799, 1993

    PubMed  Google Scholar 

  49. Kholodenko BN: How do external parameters control fluxes and concentrations of metabolites? An additional relationship in the theory of metabolic control. FEBS Lett 232: 383–386, 1988

    PubMed  Google Scholar 

  50. Torres NV, Mateo F, Melendez-Hevia E, Kacser H: Kinetics of metabolic pathways. A systemin vitro to study the control of flux. Biochem J 234: 169–174, 1986

    PubMed  Google Scholar 

  51. Flint HJ, Tateson RW, Barthelmess IB, Porteous DJ, Donachie WD, Kacser H: Control of the flux in the arginine pathway of Neurospora crassa. Modulations of enzyme activity and concentrations. Biochem J 200: 231–246, 1981

    PubMed  Google Scholar 

  52. Walsh K, Koshland DE Jr: Proc Natl Acad Sci USA 82: 3577–3581, 1985

    PubMed  Google Scholar 

  53. Jensen PR, Westerhoff HV, Michelsen O: Excess capacity of H+-ATPase and inverse respiratory control in E. coli. EMBO J 12: 1277–1282, 1993

    PubMed  Google Scholar 

  54. Groen AK, Wanders RJA, Westerhoff HV, Van der Meer R, Tager JM: Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257: 2754–2757, 1982

    PubMed  Google Scholar 

  55. Kholodenko B, Zilinskiene V, Borutaite V, Ivanovene L, Toleikis A, Praskevicius A: The role of adenine nucleotide translocator in regulation of oxidative phosphorylation in heart mitochondria. FEBS Lett 223: 247–250, 1987

    PubMed  Google Scholar 

  56. Rigoulet M, Averet N, Mazat J-P, Gurin B, Cohadon F: Redistribution of the flux-control coefficients in mitochondrial oxidative phosphorylation in the course of brain edema. Biochim Biophys Acta 932: 116–123, 1988

    PubMed  Google Scholar 

  57. Kelety T: Basic enzyme kinetics. Academiai Kiado, Budapest, 1986

    Google Scholar 

  58. Cornish-Bowden A: Principles of enzyme kinetics. Butterworth, London, 1976

    Google Scholar 

  59. Hill TL: Free energy transduction in biology. Academic Press, New York, 1977

    Google Scholar 

  60. Hofmeyr J-H S, Kacser H, Van der Merwe KJ: Metabolic control analysis of moiety conserved cycles. Eur J Biochem 155: 631–641, 1986

    PubMed  Google Scholar 

  61. Kholodenko BN: Metabolic control theory. New relationships for determining control coefficients of enzymes and response coefficients of system variables. J Nonlinear Biol 1: 107–126, 1991

    Google Scholar 

  62. Fell DA: Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286: 313–330, 1992

    PubMed  Google Scholar 

  63. Kurganov BI: Allosteric enzymes: kinetic behaviour. John Wiley & Son, 1978

  64. Baum H: In: S Fleischer, Y Hatefi, DM McLennan, A Tzagoloff (eds) Molecular Biology of Membranes. Plenum, New York, pp 243–262, 1978

    Google Scholar 

  65. Hackenbrock CR, Gupte SS: 1988. In: JJ Lemasters, CR Hackenbrock, RG Thurman, HV Westerhoff (eds) Integration of Mitochondrial Function. Plenum Press, New York, pp 15–22

    Google Scholar 

  66. Ferguson-Miller S, Rajarathnam K, Kochman J, Schindler M: 1988. In: JJ Lemasters, CR Hackenbrock, RG Thurman, HV Westerhoff (eds) Integration of Mitochondrial Function. Plenum Press, New York, pp 23–32

    Google Scholar 

  67. Kholodenko BN, Demin O, Westerhoff HV: ‘Channelled’ pathways can be more sensitive to specific regulatory signals. FEBS Lett 320: 75–78, 1993

    PubMed  Google Scholar 

  68. Hak JB, Van Beek JHGM, van Wijhe MH, Eijgelshoven MHJ, Westerhof N: Reduced cardiac ATP-synthetic capacity slows metabolic regulation and reduces contractility. Circ Res, in press 1994

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kholodenko, B.N., Cascante, M. & Westerhoff, H.V. Control theory of metabolic channelling. Mol Cell Biochem 133, 313–331 (1994). https://doi.org/10.1007/BF01267963

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01267963

Key words

Navigation