Skip to main content
Log in

In situ study of myofibrils, mitochondria and bound creatine kinases in experimental cardiomyopathies

  • Development and Pathological Alterations of Creatine Kinases
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Human cardiomyopathy has been extensively studied in the last decade, and knowledge of the functional and structural alterations of the heart has grown. However, understanding of the pathogenesis has come mostly from experimental studies. A number of work have been designed to elucidate if alterations of the contractile apparatus of cardiac cells contribute to the impairment of heart mechanics in cardiomyopathies. As well, an important question is to be solved: whether energy supply of the contraction-relaxation cycle is sufficient in the myopathic heart. Use of cardiac fibers skinned by different techniques allows to evaluate functional ability of myofibrils, mitochondria and bound creatine kinase which plays an important role in cardiomyocyte energy metabolism. The data presented in this chapter show that experimental cardiomyopathies of various types have some common features. These are an increase in calcium sensitivity of myofibrils and a depression of functional activity of mitochondrial creatine kinase. Possible mechanisms and physiological significance of these changes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Savabi F, Kirsch A: Diabetic type of cardiomyopathy in food-restricted rats. Can J Physiol Pharmacol 70: 1040–1047, 1992

    PubMed  Google Scholar 

  2. Kapelko VI, Veksler VI, Popovich MI: Cellular mechanisms of alterations in myocardial contractile function in experimental cardiomyopathies. Biomedical Science 1: 77–83, 1990

    PubMed  Google Scholar 

  3. Kapelko VI, Veksler VI, Popovich MI, Ventura-Clapier R: Energy-linked functional alterations in experimental cardiomyopathies. Am J Physiol Suppl (Oct) 261: 39–44, 1991

    PubMed  Google Scholar 

  4. Kapelko VI, Popovich MI, Veksler VI, Ventura-Clapier R, Khuchua ZA, Saks VA: Subcellular basis for increased diastolic stiffness in experimental cardiomyopathies. In: M Nagano, N Takeda, NS Dhalla (eds). The Cardiomyopathic Heart. Raven Press, Ltd, New York, 1994, pp 185–195

    Google Scholar 

  5. Veksler VI, Ventura-Clapier R, Lechene P, Vassort G: Functional state of myofibrils, mitochondria and bound creatine kinase in skinned ventricular fibers of cardiomyopathic hamsters. J Mol Cell Cardiol 20: 329–342, 1988

    PubMed  Google Scholar 

  6. Veksler VI, Murat I, Ventura-Clapier R: Creatine kinase and mechanical and mitochondrial functions in hereditary and diabetic cardiomyopathies. Can J Physiol Pharmacol 69: 852–858, 1991

    PubMed  Google Scholar 

  7. Kapelko VI, Parmley WW, Wu S, Stone RD, Jasmin G, Wikman-Coffelt J: Increased left ventricular diastolic stiffness in the early phase of hereditary cardiomyopathy. Am Heart J 116: 765–770, 1988

    PubMed  Google Scholar 

  8. Herzig JW, Gerber W, Salzmann R: Heart failure and Ca++ activation of the cardiac contractile system: hereditary cardiomyopathy in hamsters (BIO 14.6), isoprenaline overload and the effect of APP 201-533. Basic Res Cardiol 82: 326–340, 1987

    PubMed  Google Scholar 

  9. Gibson LM, Wendt IR, Stephenson DG: Contractile activation properties of ventricular myocardium from hypothyroid, euthyroid and juvenile rats. Pflügers Arch 422: 16–23, 1992

    Google Scholar 

  10. Khandoudi N, Guo AC, Chesnais M, Feuvray D: Skinned cardiac fibres of diabetic rats: contractile activation and effects of 2,3-butanedione monoxime (BDM) and caffeine. Cardiovasc Res 27: 447–452, 1993

    PubMed  Google Scholar 

  11. Hajjar RJ, Gwathmey JK: Cross-bridge dynamics in human ventricular myocardium. Regulation of contractility in the failing heart. Circulation 86: 1819–1826, 1992

    PubMed  Google Scholar 

  12. Gwathmey JK, Hajjar RJ: Calcium-activated force in a turkey model of spontaneous dilated cardiomyopathy: adaptive changes in thin myofilament Ca2+ regulation with resultant implications on contractile performance. J Mol Cell Cardiol 24: 1459–1470, 1992

    PubMed  Google Scholar 

  13. Gwathmey JK, Hajjar RJ: Effect of protein kinase C activation on sarcoplasmic reticulum function and apparent myofibrillar Ca2+ sensitivity in intact and skinned muscles from normal and diseased human myocardium. Circ Res 67: 744–752, 1990

    PubMed  Google Scholar 

  14. Schwinger RHG, Böhm M, Koch A, Uhlmann R, Schmidt U, Morano I, Rüegg JC, Erdmann E: Attenuated force-tension relationship in the failing human myocardium. J Mol Cell Cardiol 25 (Suppl I): S20, 1993

    Google Scholar 

  15. Cooper TA, Ordahl CP: A single cardiac troponin T gene generates embryonic and adult isoforms via developmentally regulated alternate splicing. J Biol Chem 260: 11140–11148, 1985

    PubMed  Google Scholar 

  16. Anderson PAW, Moore GE, Nassar R: Developmental changes in the expression of rabbit left ventricular troponin T. Circ Res 63: 742–747, 1988

    PubMed  Google Scholar 

  17. Anderson PAW, Oakeley AE: Immunological identification of five troponin T isoforms reveals an elaborate maturational troponin T profile in rabbit myocardium. Circ Res 65: 1087–1093, 1988

    Google Scholar 

  18. Nassar R, Malouf NN, Kelly MB, Oakeley AE, Anderson PAW: Force-pCa relation and troponin T isoforms of rabbit myocardium. Circ Res 69: 1470–1475, 1991

    PubMed  Google Scholar 

  19. Anderson PAW, Malouf NN, Oakeley AE, Pagani ED, Allen PD: Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res 69: 1226–1233, 1991

    PubMed  Google Scholar 

  20. Cummins P, Price KM, Littler WA: Foetal myosin light chain in human ventricle. J Muscle Res Cell Motil 1: 357–366, 1980

    PubMed  Google Scholar 

  21. Price KM, Littler WA, Cummins P: Human atrial and ventricular myosin light-chain subunits in the adult and during development. Biochem J 191: 571–580, 1980

    PubMed  Google Scholar 

  22. Hirzel OH, Tuchschmid CR, Schneider J, Krayenbuehl HP, Schaub MC: Relationship between myosin isoenzyme composition, hemodynamics, and myocardial structure in various forms of human cardiac hypertrophy. Circ Res 57: 729–740, 1985

    PubMed  Google Scholar 

  23. Morano I, Hädicke K, Böhm M, Erdmann E: Expression of the atrial myosin light chain 1 in the human ventricle increased Ca2+-sensitivity. J Mol Cell Cardiol 25 (Suppl): S131, 1993

    Google Scholar 

  24. Morano I, Bletz C, Wojciechowski R, Rüegg JC: Modulation of crossbridge kinetics by myosin isoenzymes in skinned human heart fibers. Circ Res 68: 614–618, 1991

    PubMed  Google Scholar 

  25. Morano I: Myosin light chain phosphorylation and myosin isoenzyme expression regulate cardiac calcium sensitivity by modulation of cross-bridge cycling kinetics. In: JA Lee, DG Allen (eds). Modulation of Cardiac Calcium Sensitivity. A New Approach to Increasing the Strength of the Heart. Oxford University Press Inc., New York, 1993, pp 178–196

    Google Scholar 

  26. Malhotra A, Karell M, Scheuer J: Multiple cardiac contractile protein abnormalities in myopathic Syrian hamsters (BIO 53∶58). J Mol Cell Cardiol 17: 95–107, 1985

    PubMed  Google Scholar 

  27. Pollack PS, Malhotra A, Fein FS, Scheuer J: Effects of diabetes on cardiac contractile proteins in rabbits and reversal with insulin. Am J Physiol 251: H448-H454, 1986

    PubMed  Google Scholar 

  28. Hasenfuss G, Mulieri LA, Leavitt BJ, Allen PD, Haeberle JR, Alpert NR: Alteration of contractile function and excitation-contraction coupling in dilated cardiomyopathy. Circ Res 70: 1225–1232, 1992

    PubMed  Google Scholar 

  29. Mercadier JJ, Bouveret P, Gorza L, Schiaffino S, Clark WA, Zak R, Swynghedauw B, Schwartz K: Myosin isoenzymes in normal and hypertrophied human ventricular myocardium. Circ Res 53: 52–62, 1983

    PubMed  Google Scholar 

  30. Feldman AM, Ray PE, Silan CM, Meercer JA, Minobe W, Bristow MR: Selective gene expression in failing human heart. Circulation 83: 1866–1872, 1991

    PubMed  Google Scholar 

  31. Solaro RJ, Powers FM, Gao L, Gwathmey JK: Control of myofilament activation in heart failure. Circulation 87 (Suppl VII): 38–43, 1993

    PubMed  Google Scholar 

  32. Ventura-Clapier R, Mekhfi H, Oliviero P, Swynghedauw B: Pressure overload changes cardiac skinned-fiber mechanics in rat, not in guinea pigs. Am J Physiol 254: H517-H524, 1988

    PubMed  Google Scholar 

  33. McAuliffe JJ, Gao L, Solaro RJ: Changes in myofibrillar activation and troponin C Ca2+ binding associated with troponin T isoform switching in developing rabbit heart. Circ Res 66: 1204–1216, 1990

    PubMed  Google Scholar 

  34. Reiser PJ, Westfall M, Solaro RJ: Developmental transition in myocardial troponin-T (TnT) isoforms correlates with a change in Ca2+ sensitivity. Biophys J 57: 549a, 1990

    Google Scholar 

  35. Khuchua ZA, Ventura-Clapier R, Kuznetsov AV, Grishin MN, Saks VA: Alterations in the creatine kinase system in the myocardium of cardiomyopathic hamsters. Biochem Biophys Res Commun 165: 748–757, 1989

    PubMed  Google Scholar 

  36. Popovich BK, Boheler KR, Dillmann WH: Diabetes decreases creatine kinase enzyme activity and mRNA level in the rat heart. Am J Physiol 257: E573-E577, 1989

    PubMed  Google Scholar 

  37. Savabi F, Kirsch A: Alteration of the phosphocreatine energy shuttle components in diabetic rat heart. J Mol cell Cardiol 23: 1323–1333, 1991

    PubMed  Google Scholar 

  38. Su C-Y, Payne M, Strauss AW, Dillmann WH: Selective reduction of creatine kinase subunit mRNAs in striated muscle of diabetic rats. Am J Physiol 263: E310-E316, 1992

    PubMed  Google Scholar 

  39. Kirsch A, Savabi F: Effect of food restriction on the phosphocreatine energy shuttle components in rat heart. J Mol Cell Cardiol 24: 821–830, 1992

    PubMed  Google Scholar 

  40. Saks VA, Belikova YO, Kuznetsov AV, Khuchua ZA, Branishte TH, Semenovsky ML, Naumov VG: Phosphocreatine pathway for energy transport: ADP diffusion and cardiomyopathy. Am J Physiol Suppl (Oct) 261: 30–38, 1991

    PubMed  Google Scholar 

  41. Awaji Y, Hashimoto H, Matsui Y, Kawaguchi K, Okumura K, Ito T, Satake T: Isoenzyme profiles of creatine kinase, lactate dehydrogenase, and aspartate aminotransferase in the diabetic heart: comparison with hereditary and catecholamine cardiomyopathies. Cardiovasc Res 24: 547–554, 1990

    PubMed  Google Scholar 

  42. Ingwall JS, Kramer MF, Fifer MA, Lorell BH, Shemin R, Grossman W, Allen PD: The creatine kinase system in normal and diseased human myocardium. New Engl J Med 313: 1050–1054, 1985

    PubMed  Google Scholar 

  43. Wong PCP, Smith AF: Biochemical differences between the MB and MM isoenzymes of creatine kinase. Clin Chim Acta 68: 147–158, 1976

    PubMed  Google Scholar 

  44. Szasz G, Gruber W: Creatine kinase in serum. 4. Differences in substrate affinity among the isoenzymes. Clin Chem 24: 245–249, 1978

    PubMed  Google Scholar 

  45. Veksler VI, Kapelko VI: Creatine kinase in regulation of heart function and metabolism. II. The effect of phosphocreatine on the rigor tension of EGTA-treated rat myocardial fibers. Biochim Biophys Acta 803: 265–270, 1984

    PubMed  Google Scholar 

  46. Ventura-Clapier R, Vassort G: Role of myofibrillar creatine kinase in the relaxation of rigor tension in skinned cardiac muscle. Pflügers Arch 404: 157–161, 1985

    Google Scholar 

  47. Ventura-Clapier R, Mekhfi H, Vassort G: Role of creatine kinase on force development in chemically skinned rat cardiac muscle. J Gen Physiol 89: 815–837, 1987

    PubMed  Google Scholar 

  48. Ventura-Clapier R, Veksler VI, Elizarova GV, Mekhfi H, Levitskaya EL, Saks VA: Contractile properties and creatine kinase activity of myofilaments following ischemia and reperfusion of the rat heart. Biochem Med Metab Biol 38: 300–310, 1987

    PubMed  Google Scholar 

  49. Feit H, Fuseler J, Cook JD: Myofibrillar creatine kinase in Duchenne and avian muscular dystrophy. Biochem Med 29: 355–359, 1983

    PubMed  Google Scholar 

  50. Sievers R, Parmley WW, James T, Wikman-Coffelt J: Energy levels at systole vs. diastole in normal hamster hearts vs. myopathic hamsters hearts. Circ Res 53: 759–766, 1983

    PubMed  Google Scholar 

  51. Whitmer JT: Energy metabolism and mechanical function in perfused hearts of Syrian hamsters with dilated or hypertrophic cardiomyopathy. J Mol Cell Cardiol 18: 307–317, 1986

    PubMed  Google Scholar 

  52. Wikman-Coffelt J, Sievers R, Parmley WW, Jasmin G: Verapamil preserves adenine nucleotide pool in cardiomyopathic hamster. Am J Physiol 250: H22-H28, 1986

    PubMed  Google Scholar 

  53. Markiewicz W, Wu SS, Parmley WW, Higgins CB, Sievers R, James TL, Wikman-Coffelt J, Jasmin G: Evaluation of the hereditary Syrian hamster cardiomyopathy by31P nuclear magnetic resonance spectroscopy: improvement after acute verapamil therapy. Circ Res 59: 597–604, 1986

    PubMed  Google Scholar 

  54. Allison TB, Bruttig SP, Crass MF III, Eliot RS, Shipp JC: Reduced high-energy phosphate levels in rat hearts. I. Effects of alloxan diabetes. Am J Physiol 230: 1744–1750, 1976

    PubMed  Google Scholar 

  55. Miller TB Jr: Cardiac performance of isolated perfused hearts from alloxan diabetic rats. Am J Physiol 236: H808-H812, 1979

    PubMed  Google Scholar 

  56. Kapelko VI, Popovich MI, Sharov VG, Kostin SI, Schulzhenko VS, Golikov MA, Saks VA: The ultrastructural, metabolic and functional alterations of the heart at prolonged adriamycin treatment. J Appl Cardiol 4: 79–89, 1989

    Google Scholar 

  57. Pierce GN, Dhalla NS: Heart mitochondrial function in chronic experimental diabetes in rats. Can J Cardiol 1: 48–54, 1985

    PubMed  Google Scholar 

  58. Savabi F: Mitochondrial creatine phosphokinase deficiency in diabetic rat heart. Biochem Biophys Res Commun 154: 469–475, 1988

    PubMed  Google Scholar 

  59. Kuo TH, Giacomelli F, Wiener J: Oxidative metabolism of Polytron versus Nagarse mitochondria in hearts of genetically diabetic mice. Biochim Biophys Acta 806: 9–15, 1985

    PubMed  Google Scholar 

  60. Lochner A, Opie LH, Brink AJ, Bosman AR: Defective oxidative phosphorylation in hereditary myocardiopathy in the Syrian hamster. Cardiovasc Res 3: 297–307, 1968

    Google Scholar 

  61. Jasmin G, Eu HY: Cardiomyopathy of hamster dystrophy. Ann N Y Acad Sci 317: 46–58, 1979

    PubMed  Google Scholar 

  62. Proschek L, Jasmin G: Hereditary polymyopathy and cardiomyopathy in the Syrian hamster: 2. Development of heart necrotic changes in relation to defective mitochondrial function. Muscle Nerve 5: 26–32, 1982

    PubMed  Google Scholar 

  63. Panagia V, Lee SL, Singh A, Pierce GN, Jasmin G, Dhalla NS: Impairment of mitochondrial and sarcoplasmic reticular functions during the development of heart failure in cardiomyopathic (UM-X7.1) hamsters. Can J Cardiol 2: 236–247, 1986

    PubMed  Google Scholar 

  64. Wrogemann K, Blanchaer MC, Jacobson BE: Oxidative phosphorylation at various stages of the genetically determined cardiomyopathy in the Syrian hamster. Recent Adv Studies Cardiac Struct Metabol 3: 467–478, 1973

    Google Scholar 

  65. Wrogemann K, Blanchaer MC, Thakar JH, Mezon BJ: On the role of mitochondria in the hereditary cardiomyopathy of the Syrian hamster. Recent Adv Studies Cardiac Struct Metabol 6: 231–241, 1975

    Google Scholar 

  66. Hoppel CL, Tandler B, Parland W, Turkaly JS, Albers LD: Hamster cardiomyopathy. A defect in oxidative phosphorylation in the cardiac interfibrillar mitochondria. J Biol Chem 257: 1540–1548, 1982

    PubMed  Google Scholar 

  67. Veksler VI, Kuznetsov AV, Sharov VG, Kapelko VI, Saks VA: Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta 892: 191–196, 1987

    PubMed  Google Scholar 

  68. Saks VA, Belikova YO, Kuznetsov AV:In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochim Biophys Acta 1074: 302–311, 1991

    PubMed  Google Scholar 

  69. Khuchua ZA, Kuznetsov AV, Vasilyeva EV, Ventura-Clapier R, Clark J, Steinschneider AY, Korchazhkina OV, Lakomkin VL, Branishte T, Ruuge EK, Kapelko VI, Saks VA: The creatine kinase system and cardiomyopathy. Am J Cardiovasc Pathology 4: 223–234, 1992

    Google Scholar 

  70. Hunter EG, Hughes V, White J: Cardiomyopathic hamsters, CHF 146 and CHF 147: a preliminary study. Can J Physiol Pharmacol 62: 1423–1428, 1984

    PubMed  Google Scholar 

  71. Tanaka Y, Konno N, Kako KJ: Mitochondrial dysfunction observedin situ in cardiomyocytes of rats in experimental diabetes. Cardiovasc Res 26: 409–414, 1992

    PubMed  Google Scholar 

  72. Seppet EK, Kairane CB, Khuchua ZA, Kadaya LY, Kallikorm AP, Saks VA: Hormone regulation of cardiac energy metabolism. III. Effect of thyroid state on distribution of creatine kinase isoenzymes and creatine-controlled respiration in cardiac muscle. J Appl Cardiol 6: 301–311, 1991

    Google Scholar 

  73. Clark JF, Khuchua Z, Kuznetsov A, Saks VA, Ventura-Clapier R: Compartmentation of creatine kinase isoenzymes in myometrium of gravid guinea-pig. J Physiol 466: 553–572, 1993

    PubMed  Google Scholar 

  74. Saks VA, Kapelko VI, Kupriyanov VV, Kuznetsov AV, Lakomkin VL, Veksler VI, Sharov VG, Javadov SA, Seppet EK: Quantitative evaluation of relationship between cardiac energy metabolism and post-ischemic recovery of contractile function. J Mol Cell Cardiol 21 (Suppl): 67–78, 1989

    Google Scholar 

  75. Veksler VI, Ventura-Clapier R: Ischemic metabolic factors—high inorganic phosphate and acidosis — modulate mitochondrial creatine kinase functional activity in skinned cardiac fibers. J Mol Cell Cardiol 26: 335–339, 1994

    PubMed  Google Scholar 

  76. Vial C, Font B, Goldschmidt D, Gautheron DC: Dissociation and reassociation of creatine kinase with heart mitochondria; pH and phosphate dependence. Biochem Biophys Res Commun 88: 1352–1359, 1979

    PubMed  Google Scholar 

  77. Kuznetsov AV, Khuchua ZA, Vassil'eva EV, Medved'eva NV, Saks VA: Heart mitochondrial creatine kinase revisited: the outer mitochondrial membrane is not important for coupling of phosphocreatine production to oxidative phosphorylation. Arch Biochem Biophys 268: 176–190, 1989

    PubMed  Google Scholar 

  78. Jacobus WE, Lehninger AL: Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. J Biol Chem 248: 4803–4810, 1973

    PubMed  Google Scholar 

  79. Mahler M: Progressive loss of mitochondrial creatine phosphokinase activity in muscular dystrophy. Biochem Biophys Res Commun 88: 895–906, 1979

    PubMed  Google Scholar 

  80. Bennett VD, Hall N, DeLuca M, Suelter CH: Decreased mitochondrial creatine kinase activity in dystrophic chicken breast muscle alters creatine-linked respiratory coupling. Arch Biochem Biophys 240: 380–391, 1985

    PubMed  Google Scholar 

  81. Schmitt T, Pette D: Increased mitochondrial creatine kinase in chronically stimulated fast-twitch rabbit muscle. FEBS Lett 188: 341–344, 1985

    PubMed  Google Scholar 

  82. Yamashita K, Yoshioka T: Activities of creatine kinase isoenzymes in single skeletal muscle fibres of trained and untrained rats. Pflügers Arch 421: 270–273, 1992

    Google Scholar 

  83. Apple F, Rogers MA: Mitochondrial creatine kinase activity alterations in skeletal muscle during long-distance running. J Appl Physiol 61: 482–485, 1986

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veksler, V., Ventura-Clapier, R. In situ study of myofibrils, mitochondria and bound creatine kinases in experimental cardiomyopathies. Mol Cell Biochem 133, 287–298 (1994). https://doi.org/10.1007/BF01267961

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01267961

Key words

Navigation