Skip to main content
Log in

Associated particle aggregates in juxtaparanodal axolemma and adaxonal Schwann cell membrane of rat peripheral nerve

  • Published:
Journal of Neurocytology

Summary

Freeze-fracture observations have been made on unfixed cryoprotected, and glutaraldehyde-perfused and cryoprotected rat sciatic nerve. In the juxtaparanodal region of the internode, numerous particle clusters were observed on the axolemmal E face and rings of particles of uniform size on the P face of the adaxonal Schwann cell membrane. Both of these particle aggregates were concentrated in the internodal region immediately adjacent to the paranode (juxtaparanodal). The findings provide evidence for a close association between the two particle formations, suggesting a unitary structure forming links between the axolemma and Schwann cell membrane. Figures are given for the density distribution of these particles at the juxtaparanodal region. They were very rarely observed on membrane fracture faces of the general internodal regions. It is possible that these particle formations may represent potassium channels or that they could provide channels for other metabolic communication between the Schwann cell and the axon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akert, K., Sandri, C., Livingston, R. B. &Moor, H. (1974) Extracellular spaces and junctional complexes at the node of Ranvier. InActualités Neurophysiologiques (edited byMonnier, A. M.), Vol. 10, pp. 9–22. Paris: Masson.

    Google Scholar 

  • Berthold, C. H. (1978) Morphology of normal peripheral axons. InPhysiology and Pathobiology of Axons (edited byWaxman, S. E.), pp. 3–63. New York: Raven Press.

    Google Scholar 

  • Branton, D., Bullivant, S., Gilula, N. B., Karnovsky, M. J., Moor, H., Mühlethaler, K., Northcote, D. H., Packer, L., Satir, B., Satir, P., Speth, V., Staehelin, L. A., Steere, R. L. &Weinstein, R. A. (1975) Freeze-etching nomenclature.Science 190, 54–6.

    PubMed  Google Scholar 

  • Brismar, T. (1980) Potential clamp analysis of membrane currents in rat myelinated nerve fibres.Journal of Physiology 298, 171–84.

    PubMed  Google Scholar 

  • Chiu, S. Y. &Ritchie, J. M. (1980) Potassium channels in nodal and internodal axonal membrane in mammalian myelinated fibres.Nature 284, 170–1.

    PubMed  Google Scholar 

  • Chiu, S. Y., Ritchie, J. M., Rogart, R. B. &Stagg, D. (1979) A quantitative description of membrane currents in rabbit myelinated nerve.Journal of Physiology 292, 149–66.

    PubMed  Google Scholar 

  • Dermietzel, R. (1974) Junctions in the central nervous system of the cat. II. A contribution to the tertiary structure of the axonal-glial junction in the paranodal region of the node of Ranvier.Cell and Tissue Research 148, 577–86.

    PubMed  Google Scholar 

  • Dermietzel, R. &Brettschneider, H. (1973) Eine Untersuchung peripherer vegätiver Nervenfasern des Ductus deferens mit Hilfe der Gefrierätztechnik.Zeitschrift für Zellforschung und mikroskopische Anatomie 137, 111–24.

    Google Scholar 

  • Ellisman, M. H. (1979) Molecular specializations of the axon membrane at nodes of Ranvier are not dependent upon myelination.Journal of Neurocytology 8, 719–35.

    PubMed  Google Scholar 

  • Ellisman, M. H., Friedman, P. L. &Hamilton, W. H. (1980) The location of sodium and calcium to Schwann cell paranodal loops at nodes of Ranvier and of calcium to compact myelin.Journal of Neurocytology 9, 185–205.

    PubMed  Google Scholar 

  • Karnovsky, M. J. (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy.Journal of Cell Biology 27, 137A.

    Google Scholar 

  • Kristol, C., Akert, K., Sandri, C., Wyss, U. R., Bennett, M. V. L. &Moor, H. (1977) The Ranvier nodes in the neurogenic electric organ of the knife fishSternarchus: a freeze-etching study on the distribution of membrane-associated particles.Brain Research 125, 197–212.

    PubMed  Google Scholar 

  • Livingston, R. B., Pfenninger, K., Moor, H. &Akert, K. (1973) Specialized paranodal and interparanodal glial-axonal junctions in the peripheral and central nervous system: a freeze-fracture study.Brain Research 58, 1–24.

    PubMed  Google Scholar 

  • Miller, R. G. &Pinto Da Silva, P. (1977) Particle rosettes in the periaxonal Schwann cell membrane and particle clusters in the axolemma of the rat sciatic nerve.Brain Research 130, 135–41.

    PubMed  Google Scholar 

  • Müller-Mohnssen, H., Tippe, A., Hillenkamp, F. &Ünsold, E. (1974) Is the rise of the action potential at the Ranvier node controlled by a paranodal organ?Naturwissenschaften 61, 369–70.

    Google Scholar 

  • Nonner, W. &Stämpfli, R. (1969) A new voltage clamp method. InLaboratory Techniques in Membrane Biophysics (edited byPassow, H. &Stämpfli, R.), pp. 171–175. Berlin: Springer Verlag.

    Google Scholar 

  • Peracchia, C. (1974) Excitable membrane ultrastructure. I Freeze-fracture of crayfish axons.Journal of Cell Biology 61, 107–22.

    Google Scholar 

  • Quick, D. C. &Waxman, S. G. (1977a) Ferric ion, ferrocyanide and inorganic phosphate as cytochemical reactants at peripheral nodes of Ranvier.Journal of Neurocytology 6, 555–70.

    PubMed  Google Scholar 

  • Quick, D. C. &Waxman, S. G. (1977b) Specific staining of the axon membrane at nodes of Ranvier with ferric ion and ferrocyanide.Journal of the Neurological Sciences 31, 1–11.

    PubMed  Google Scholar 

  • Ritchie, J. M. &Rogart, R. B. (1977) Density of sodium channels in mammalian myelinated nerve fibres and nature of the axonal membrane under the myelin sheath.Proceedings of the National Academy of Sciences (U.S.A)74, 211–5.

    Google Scholar 

  • Rosenbluth, J. (1976) Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain.Journal of Neurocytology 5, 731–45.

    PubMed  Google Scholar 

  • Sandri, C., Van Buren, J. M. &Akert, K. (1977) Membrane morphology of the vertebrate nervous system. A study in freeze-etch technique.Progress in Brain Research 46, 1–384.

    PubMed  Google Scholar 

  • Schnapp, B. &Mugnaini, E. (1975) The myelin sheath: Electron microscopic studies with thin sections and freeze-fracture. InGolgi Centennial Symposium: Perspectives in Neurobiology (edited bySantini, M.), pp. 209–233. New York: Raven Press.

    Google Scholar 

  • Schnapp, B. &Mugnaini, E. (1978) Membrane architecture of myelinated fibres as seen by freeze-fracture. InPhysiology and Pathobiology of Axons (edited byWaxman, S. G.), pp. 83–123. New York: Raven Press.

    Google Scholar 

  • Singer, M. &Salpeter, M. M. (1966a) Transport of tritium-labelled 1-histidine through the Schwann cell and myelin sheath into the axon of peripheral nerve.Nature 210, 1225–7.

    PubMed  Google Scholar 

  • Singer, M. &Salpeter, M. M. (1966b) The transport of3H-L-histidine through the Schwann and myelin sheath into the axon including a re-evaluation of myelin function.Journal of Morphology 120, 281–316.

    PubMed  Google Scholar 

  • Spencer, P. S. &Thomas, P. K. (1974) Ultrastructural studies of the dying-back process. II. The sequestration and removal by Schwann cells and oligodendrocytes of organelles from normal and diseased axons.Journal of Neurocytology 3, 763–83.

    PubMed  Google Scholar 

  • Stolinski, C. (1975) Freeze-fracture replication apparatus for biological specimens.Journal of Microscopy 104, 235–44.

    PubMed  Google Scholar 

  • Stolinski, C. (1977) Freeze-fracture replication in biological research: Development, current practice and future prospects.Micron 8, 87–111.

    Google Scholar 

  • Stolinski, C., Breathnach, A. S., Martin, B., Thomas, P. K., King, R. &Gabriel, G. (1980) Freeze-fracture observations on particle rosettes in periaxonal Schwann cell membrane and axolemma of myelinated fibres of rat peripheral nerve.Journal of Anatomy 131, 759–60 (abstract).

    Google Scholar 

  • Tippe, A. &Müller-Mohnssen, H. (1975) Further experimental evidence for the synapse hypothesis of Na+ current activation and inactivation at the Ranvier node.Naturwissenschaften 62, 490–1.

    PubMed  Google Scholar 

  • Waxman, S. G. &Foster, R. E. (1980) Ionic channel distribution and heterogeneity of the axon membrane in myelinated fibers.Brain Research Reviews 2, 205–34.

    Google Scholar 

  • Wiley, C. A. &Ellisman, M. H. (1980) Rows of dimeric-particles within the axolemma and juxtaposed particles within glia, incorporated into a new model for the paranodal glial-axonal junction at the node of Ranvier.Journal of Cell Biology 84, 261–80.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolinski, C., Breathnach, A.S., Martin, B. et al. Associated particle aggregates in juxtaparanodal axolemma and adaxonal Schwann cell membrane of rat peripheral nerve. J Neurocytol 10, 679–691 (1981). https://doi.org/10.1007/BF01262597

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01262597

Keywords

Navigation