Skip to main content

Preparation of P2 or Percoll-Purified Synaptosomes from Mammalian Brain Tissue

  • Protocol
  • First Online:
Synaptosomes

Part of the book series: Neuromethods ((NM,volume 141))

  • 1481 Accesses

Abstract

Isolated nerve endings have been widely used as a model for studying synaptic functions in the brain. These nerve endings can be separated from the axons and postsynaptic connections when neuronal tissue is homogenized in an isotonic buffer. The plasma membrane of the sheared nerve endings reseals to form pinched-off nerve terminals called synaptosomes. Synaptosomes show similar morphology and contain all the intact molecular machinery found in nerve terminals in vivo, including the proteins, synaptic vesicles, and mitochondria, necessary for regulating synaptic function for the release, uptake, and storage of neurotransmitters upon different stimulations. The methods for making synaptosomes have varied and been modified for different experimental applications. The goal of this chapter is to describe optimized procedures used in our laboratories for isolation of intact and functional synaptosomes from whole mammalian brain tissue, at two levels of purity: the “crude” P2 and the Dunkley S1 method of Percoll-purified fractions, for molecular, biochemical, and functional assays. These represent the shortest experimental methods to date. The protocol involves mild homogenization of the brain tissue in isotonic conditions, with medium centrifugation speeds to minimize the mechanical damage to the synaptosomes and the preparation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whittaker VP, Michaelson IA, Kirkland RJ (1964) The separation of synaptic vesicles from nerve-ending particles (‘synaptosomes’). Biochem J 90:293–303

    Article  CAS  Google Scholar 

  2. Whittaker VP, Gray EG (1962) The synapse: biology and morphology. Br Med Bull 18:223–228

    Article  CAS  Google Scholar 

  3. Gray EG, Whittaker VP (1962) Isolation of nerve endings from brain: an electron microscopic study of the cell fragments derived by homogenization and centrifugation. J Anat 96:79–88

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Whittaker VP (1993) Thirty years of synaptosome research. J Neurocytol 22:735–742

    Article  CAS  Google Scholar 

  5. van Spronsen M, Hoogenraad CC (2010) Synapse pathology in psychiatric and neurologic disease. Curr Neurol Neurosci Rep 10:207–214

    Article  Google Scholar 

  6. Stephan KE, Baldeweg T, Friston KJ (2006) Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry 59:929–939

    Article  CAS  Google Scholar 

  7. Balu DT, Coyle JT (2011) Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci Biobehav Rev 35:848–870

    Article  CAS  Google Scholar 

  8. Crabtree GW, Gogos JA (2014) Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia. Front Synaptic Neurosci 6:28

    Article  Google Scholar 

  9. Sudhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:903–911

    Article  Google Scholar 

  10. Nelson SB, Valakh V (2015) Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87:684–698

    Article  CAS  Google Scholar 

  11. Pfeiffer BE, Huber KM (2009) The state of synapses in fragile X syndrome. Neuroscientist 15:549–567

    Article  CAS  Google Scholar 

  12. Soto D, Altafaj X, Sindreu C, Bayes A (2014) Glutamate receptor mutations in psychiatric and neurodevelopmental disorders. Commun Integr Biol 7:e27887

    Article  Google Scholar 

  13. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  CAS  Google Scholar 

  14. Calo L, Wegrzynowicz M, Santivanez-Perez J, Grazia SM (2016) Synaptic failure and alpha-synuclein. Mov Disord 31:169–177

    Article  CAS  Google Scholar 

  15. De Robertis E, Pelleggrino de Iraldi DE, Rodriguez GC, Gomez CJ (1961) On the isolation of nerve endings and synaptic vesicles. J Biophys Biochem Cytol 9:229–235

    Article  Google Scholar 

  16. Dunkley PR, Jarvie PE, Heath JW, Kidd GJ, Rostas JA (1986) A rapid method for isolation of synaptosomes on Percoll gradients. Brain Res 372:115–129

    Article  CAS  Google Scholar 

  17. Thorne B, Wonnacott S, Dunkley PR (1991) Isolation of hippocampal synaptosomes on Percoll gradients: cholinergic markers and ligand binding sites. J Neurochem 56:479–484

    Article  CAS  Google Scholar 

  18. Hebb CO, Whittaker VP (1958) Intracellular distributions of acetylcholine and choline acetylase. J Physiol 142:187–196

    Article  CAS  Google Scholar 

  19. Clementi F, Whittaker VP, Sheridan MN (1966) The yield of synaptosomes from the cerebral cortex of Guinea pigs estimated by a polystyrene bead “tagging” procedure. Z Zellforsch Mikrosk Anat 72:126–138

    Article  CAS  Google Scholar 

  20. Dunkley PR, Jarvie PA, Robinson PJ (2008) A rapid percoll gradient procedure for preparation of synaptosomes. Nat Protoc 3:1718–1728

    Article  CAS  Google Scholar 

  21. Sokolow S, Henkins KM, Williams IA, Vinters HV, Schmid I, Cole GM, Gylys KH (2012) Isolation of synaptic terminals from Alzheimer’s disease cortex. Cytometry A 81:248–254

    Article  Google Scholar 

  22. Quan A, McGeachie AB, Keating DJ, van Dam EM, Rusak J, Chau N, Malladi CS, Chen C, McCluskey A, Cousin MA, Robinson PJ (2007) MiTMAB is a surface-active dynamin inhibitor that blocks endocytosis mediated by dynamin I or dynamin II. Mol Pharmacol 72:1425–1439

    Article  CAS  Google Scholar 

  23. Tan TC, Valova VA, Malladi CS, Graham ME, Berven LA, Jupp OJ, Hansra G, McClure SJ, Sarcevic B, Boadle RA, Larsen MR, Cousin MA, Robinson PJ (2003) Cdk5 is essential for synaptic vesicle endocytosis. Nat Cell Biol 5:701–710

    Article  CAS  Google Scholar 

  24. Polosa PL, Attardi G (1991) Distinctive pattern and translational control of mitochondrial protein synthesis in rat brain synaptic endings. J Biol Chem 266:10011–10017

    CAS  PubMed  Google Scholar 

  25. Dunkley PR, Robinson PJ (1986) Depolarization-dependent protein phosphorylation in synaptosomes: mechanisms and significance. Prog Brain Res 69:273–293

    Article  CAS  Google Scholar 

  26. Ashton AC, Ushkaryov YA (2005) Properties of synaptic vesicle pools in mature central nerve terminals. J Biol Chem 280:37278–37288

    Article  CAS  Google Scholar 

  27. Morgan IG (1976) Synaptosomes and cell separation. Neuroscience 1:159–165

    Article  CAS  Google Scholar 

  28. Erecinska M, Nelson D, Silver IA (1996) Metabolic and energetic properties of isolated nerve ending particles (synaptosomes). Biochim Biophys Acta 1277:13–34

    Article  Google Scholar 

  29. Nicholls DG (2003) Bioenergetics and transmitter release in the isolated nerve terminal. Neurochem Res 28:1433–1441

    Article  CAS  Google Scholar 

  30. Raiteri L, Raiteri M (2000) Synaptosomes still viable after 25 years of superfusion. Neurochem Res 25:1265–1274

    Article  CAS  Google Scholar 

  31. Ghijsen WE, Leenders AG, Lopes Da Silva FH (2003) Regulation of vesicle traffic and neurotransmitter release in isolated nerve terminals. Neurochem Res 28:1443–1452

    Article  CAS  Google Scholar 

  32. Verity MA, Brown WJ, Cheung M (1980) Isolation of ribosome containing synaptosome subpopulation with active in vitro protein synthesis. J Neurosci Res 5:143–153

    Article  CAS  Google Scholar 

  33. Loguercio PP, Attardi G (1996) Mitochondrial protein synthesis in rat brain synaptosomes. Methods Enzymol 264:211–217

    Article  Google Scholar 

  34. Eyman M, Cefaliello C, Ferrara E, De SR, Crispino M, Giuditta A (2007) Synaptosomal protein synthesis is selectively modulated by learning. Brain Res 1132:148–157

    Article  CAS  Google Scholar 

  35. Gioio AE, Eyman M, Zhang H, Lavina ZS, Giuditta A, Kaplan BB (2001) Local synthesis of nuclear-encoded mitochondrial proteins in the presynaptic nerve terminal. J Neurosci Res 64:447–453

    Article  CAS  Google Scholar 

  36. De Robertis E, Pellegrino de Iraldi A, Rodriquez de Lores Arniaz G, Salganicoff L (1962) Cholinergic and noncholinergic nerve endings in rat brain. I. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. J Neurochem 9:23–35

    Article  Google Scholar 

  37. Tamir H, Rapport MM, Roizin L, Huang YL, Liu JC (1974) Preparation of synaptosomes and vesicles with sodium diatrizoate. J Neurochem 23:943–949

    Article  CAS  Google Scholar 

  38. Abdel-Latif AA (1966) A simple method for isolation of nerve-ending particles from rat brain. Biochim Biophys Acta 121:403–406

    Article  CAS  Google Scholar 

  39. Kurokawa M, Sakamoto T, Kato M (1965) A rapid isolation of nerve-ending particles from brain. Biochim Biophys Acta 94:307–309

    Article  CAS  Google Scholar 

  40. Hayashi M, Raimondi A, O'Toole E, Paradise S, Collesi C, Cremona O, Ferguson SM, De Camilli P (2008) Cell- and stimulus-dependent heterogeneity of synaptic vesicle endocytic recycling mechanisms revealed by studies of dynamin 1-null neurons. Proc Natl Acad Sci U S A 105:2175–2180

    Article  CAS  Google Scholar 

  41. Maurer UE, Sodeik B, Grunewald K (2008) Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. Proc Natl Acad Sci U S A 105:10559–10564

    Article  CAS  Google Scholar 

  42. Fernandez-Busnadiego R, Zuber B, Maurer UE, Cyrklaff M, Baumeister W, Lucic V (2010) Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography. J Cell Biol 188:145–156

    Article  CAS  Google Scholar 

  43. Wilhelm BG, Mandad S, Truckenbrodt S, Krohnert K, Schafer C, Rammner B, Koo SJ, Classen GA, Krauss M, Haucke V, Urlaub H, Rizzoli SO (2014) Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344:1023–1028

    Article  CAS  Google Scholar 

  44. Whittaker VP (1968) The morphology of fractions of rat forebrain synaptosomes separated on continuous sucrose density gradients. Biochem J 106:412–417

    Article  CAS  Google Scholar 

  45. Chan KY, Bunt AH (1978) An association between mitochondria and microtubules in synaptosomes and axon terminals of cerebral cortex. J Neurocytol 7:137–143

    Article  CAS  Google Scholar 

  46. Gray EG, Burgoyne RD, Westrum LE, Cumming R, Barron J (1982) The enigma of microtubule coils in brain synaptosomes. Proc R Soc Lond B Biol Sci 216:385–396

    Article  CAS  Google Scholar 

  47. Burgoyne RD, Cumming R (1983) Taxol stabilizes synaptosomal microtubules without inhibiting acetylcholine release. Brain Res 280:190–193

    Article  CAS  Google Scholar 

  48. Kadota K, Kadota T (1973) Isolation of coated vesicles, plain synaptic vesicles, and flocculent material from a crude synaptosome fraction of Guinea pig whole brain. J Cell Biol 58:135–151

    Article  CAS  Google Scholar 

  49. Leenders AG, Scholten G, de Lange RP, Lopes Da Silva FH, Ghijsen WE (2002) Sequential changes in synaptic vesicle pools and endosome-like organelles during depolarization near the active zone of central nerve terminals. Neuroscience 109:195–206

    Article  CAS  Google Scholar 

  50. Wenzel EM, Morton A, Ebert K, Welzel O, Kornhuber J, Cousin MA, Groemer TW (2012) Key physiological parameters dictate triggering of activity-dependent bulk endocytosis in hippocampal synapses. PLoS One 7:e38188

    Article  CAS  Google Scholar 

  51. Gonatas NK, utilio-Gambetti L, Gambetti P, Shafer B (1971) Morphological and biochemical changes in rat synaptosome fractions during neonatal development. J Cell Biol 51:484–498

    Article  CAS  Google Scholar 

  52. Kanerva L, Hervonen A, Tissari AH (1974) Ultrastructure of synaptosomes from midterm human fetal brain. Acta Physiol Scand 92:286–288

    Article  CAS  Google Scholar 

  53. Dunkley PR, Heath JW, Harrison SM, Jarvie PE, Glenfield PJ, Rostas JA (1988) A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions. Brain Res 441:59–71

    Article  CAS  Google Scholar 

  54. Robinson PJ, Jarvie PA, Dunkley PR, Jarvie PE (1984) Depolarisation-dependent protein phosphorylation in rat cortical synaptosomes is inhibited by fluphenazine at a step after calcium entry. J Neurochem 43:659–667

    Article  CAS  Google Scholar 

  55. Robinson PJ, Lovenberg W (1986) Dopamine and serotonin in two populations of synaptosomes isolated by percoll gradient centrifugation. Neurochem Int 9:455–458

    Article  CAS  Google Scholar 

  56. Michaelis ML, Jiang L, Michaelis EK (2017) Isolation of synaptosomes, synaptic plasma membranes, and synaptic junctional complexes. Methods Mol Biol 1538:107–119

    Article  CAS  Google Scholar 

  57. Dodd PR, Hardy JA, Oakley AE, Edwardson JA, Perry EK, Delaunoy JP (1981) A rapid method for preparing synaptosomes: comparison, with alternative procedures. Brain Res 226:107–118

    Article  CAS  Google Scholar 

  58. Robinson PJ, Gehlert DR, Sanna E, Hanbauer I (1989) Two fractions enriched for striatal synaptosomes isolated by percoll gradient centrifugation: synaptosome morphology, dopamine and serotonin receptor distribution, and adenylate cyclase activity. Neurochem Int 15:339–348

    Article  CAS  Google Scholar 

  59. Daniel JA, Malladi CS, Kettle E, McCluskey A, Robinson PJ (2012) Analysis of synaptic vesicle endocytosis in synaptosomes by high content screening. Nat Protoc 7:1439–1455

    Article  CAS  Google Scholar 

  60. Johansen L, Roberg B, Kvamme E (1987) Uptake and release for glutamine and glutamate in a crude synaptosomal fraction from rat brain. Neurochem Res 12:135–140

    Article  CAS  Google Scholar 

  61. Robinson PJ, Sontag J-M, Liu JP, Fykse EM, Slaughter C, McMahon HT, Südhof TC (1993) Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals. Nature 365:163–166

    Article  CAS  Google Scholar 

  62. Anggono V, Smillie KJ, Graham ME, Valova VA, Cousin MA, Robinson PJ (2006) Syndapin I is the phosphorylation-regulated dynamin I partner in synaptic vesicle endocytosis. Nat Neurosci 9:752–760

    Article  CAS  Google Scholar 

  63. Gylys KH, Bilousova T (2017) Flow cytometry analysis and quantitative characterization of tau in synaptosomes from Alzheimer's disease brains. Methods Mol Biol 1523:273–284

    Article  CAS  Google Scholar 

  64. Xue J, Graham ME, Novelle AE, Sue N, Gray N, McNiven MA, Smillie KJ, Cousin MA, Robinson PJ (2011) Calcineurin selectively docks with the dynamin Ixb splice variant to regulate activity-dependent bulk endocytosis. J Biol Chem 286:30295–30303

    Article  CAS  Google Scholar 

  65. Dunkley PR, Baker CM, Robinson PJ (1986) Depolarization-dependent protein phosphorylation in rat cortical synaptosomes: characterization of active protein kinases by phosphopeptide analysis of substrates. J Neurochem 46:1692–1703

    Article  CAS  Google Scholar 

  66. Robinson PJ (1991) Dephosphin, a 96,000 Dalton substrate of protein kinase C in synaptosomal cytosol is phosphorylated in intact synaptosomes. FEBS Lett 282:388–392

    Article  CAS  Google Scholar 

  67. Graham ME, Anggono V, Bache N, Larsen MR, Craft GE, Robinson PJ (2007) The in vivo phosphorylation sites of rat brain dynamin I. J Biol Chem 282:14695–14707

    Article  CAS  Google Scholar 

  68. Nagy A, Delgado-Escueta AV (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll). J Neurochem 43:1114–1123

    Article  CAS  Google Scholar 

  69. Nichols RA, Chilcote TJ, Czernik AJ, Greengard P (1992) Synapsin I regulates glutamate release from rat brain synaptosomes. J Neurochem 58:783–785

    Article  CAS  Google Scholar 

  70. Cousin MA, Robinson PJ (2000) Ca(2+) influx inhibits dynamin and arrests synaptic vesicle endocytosis at the active zone. J Neurosci 20:949–957

    Article  CAS  Google Scholar 

  71. Cousin MA, Tan TC, Robinson PJ (2001) Protein phosphorylation is required for endocytosis in nerve terminals. Potential role for the dephosphins dynamin I and synaptojanin, but not AP180 or amphiphysin. J Neurochem 76:105–116

    Article  CAS  Google Scholar 

  72. Budzinski KL, Sgro AE, Fujimoto BS, Gadd JC, Shuart NG, Gonen T, Bajjalieh SM, Chiu DT (2011) Synaptosomes as a platform for loading nanoparticles into synaptic vesicles. ACS Chem Neurosci 2:236–241

    Article  CAS  Google Scholar 

  73. Luquet E, Biesemann C, Munier A, Herzog E (2017) Purification of synaptosome populations using fluorescence-activated synaptosome sorting. Methods Mol Biol 1538:121–134

    Article  CAS  Google Scholar 

  74. Mallei A, Failler M, Corna S, Racagni G, Mathe AA, Popoli M (2014) Synaptoproteomic analysis of a rat gene-environment model of depression reveals involvement of energy metabolism and cellular remodeling pathways. Int J Neuropsychopharmacol 18:1–21

    Google Scholar 

  75. Bosch PJ, Peng L, Kivell BM (2015) Proteomics analysis of dorsal striatum reveals changes in synaptosomal proteins following methamphetamine self-administration in rats. PLoS One 10:e0139829

    Article  Google Scholar 

  76. Oztas B, Kocak H, Oner P, Kucuk M (2000) Sex-dependent changes in blood-brain barrier permeability and brain NA(+),K(+) ATPase activity in rats following acute water intoxication. J Neurosci Res 62:750–753

    Article  CAS  Google Scholar 

  77. Mitrovic AD, Maddison JE, Johnston GA (1999) Influence of the oestrous cycle on L-glutamate and L-aspartate transport in rat brain synaptosomes. Neurochem Int 34:101–108

    Article  CAS  Google Scholar 

  78. Miyasaka K, Kanai S, Ohta M, Funakoshi A (1997) Aging impairs release of central and peripheral cholecystokinin (CCK) in male but not in female rats. J Gerontol A Biol Sci Med Sci 52:M14–M18

    Article  CAS  Google Scholar 

  79. Bodzenta A, Moniuszko-Jakoniuk J, Wisniewski K (1979) The effect of kallikrein on central effects of acetylcholine in rats receiving indomethacin and prostaglandin E1. Pol J Pharmacol Pharm 31:595–603

    CAS  PubMed  Google Scholar 

  80. Wisniewski K, Bodzenta A (1975) Kinins and central effects of the acetylcholine. Acta Neurobiol Exp (Wars) 35:85–92

    CAS  Google Scholar 

  81. Braszko J, Koscielak M (1975) Effect of kinins on the central action of serotonin. Pol J Pharmacol Pharm 27:61–68

    CAS  PubMed  Google Scholar 

  82. De Belleroche JA, Bradford HF (1975) The release of endogenous 3,4-dihydroxyphenethylamine from synaptosomes isolated from corpus striatum. Biochem Soc Trans 3:99–101

    Article  Google Scholar 

  83. Clark M, Dar MS (1989) Release of endogenous glutamate from rat cerebellar synaptosomes: interactions with adenosine and ethanol. Life Sci 44:1625–1635

    Article  CAS  Google Scholar 

  84. Whittaker VP, Greengard P (1971) The isolation of synaptosomes from the brain of a teleost fish, Centriopristes striatus. J Neurochem 18:173–176

    Article  CAS  Google Scholar 

  85. Dodd PR, Watson WE, Morrison MM, Johnston GA, Bird ED, Cowburn RF, Hardy JA (1989) Uptake of gamma-aminobutyric acid and L-glutamic acid by synaptosomes from postmortem human cerebral cortex: multiple sites, sodium dependence and effect of tissue preparation. Brain Res 490:320–331

    Article  CAS  Google Scholar 

  86. Dodd PR, Hardy JA, Baig EB, Kidd AM, Bird ED, Watson WE, Johnston GA (1986) Optimization of freezing, storage, and thawing conditions for the preparation of metabolically active synaptosomes from frozen rat and human brain. Neurochem Pathol 4:177–198

    Article  CAS  Google Scholar 

  87. Hill TA, Odell LR, Edwards JK, Graham ME, McGeachie AB, Rusak J, Quan A, Abagyan R, Scott JL, Robinson PJ, McCluskey A (2005) Small molecule inhibitors of dynamin I GTPase activity: development of dimeric tyrphostins. J Med Chem 48:7781–7788

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Peter Dunkley is thanked for unwavering support and assistance in these protocol designs. Lasse Bak, University of Copenhagen, Copenhagen, Denmark, is thanked for the idea of using cork to distribute the Percoll layers. Irma Villaflor, Chief Veterinary Officer and Head of BioResources at Children’s Medical Research Institute in Sydney, Australia, is thanked for introducing us to the DecapiCone® and developing its application to avoid manual animal stunning. We wish to thank Emma Kettle and the Electron Microscope Facility, Westmead Hospital (Westmead, New South Wales, Australia), for technical assistance in obtaining the electron microscope images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip J. Robinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xue, J., Quan, A., Robinson, P.J. (2018). Preparation of P2 or Percoll-Purified Synaptosomes from Mammalian Brain Tissue. In: Murphy, K. (eds) Synaptosomes. Neuromethods, vol 141. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8739-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8739-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8738-2

  • Online ISBN: 978-1-4939-8739-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics