Skip to main content
Log in

The concept of isoreceptors: Application to the nicotinic acetylcholine receptor and the gamma-aminobutyric acidA/benzodiazepine receptor complex

  • Original Papers
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The concept of isoreceptors offers a possible clue to account for pharmacological and biochemical heterogeneity in specific receptor systems. The existence of isozymes has set the foundation for the definition of isoreceptors. The resulting criteria are applied to two central receptor complexes. Accordingly, the nicotinic acetylcholine receptor is defined as an isoreceptor, and research results on the GABA/benzodiazepine receptor are interpreted under the consideration of the possible existence of isoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boulter J, Evans K, Goldman D, Martin G, Treco D, Heinemann S, Patrick J (1986) Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor α-subunit. Nature 319: 368–374

    PubMed  Google Scholar 

  • Braestrup C, Nielsen M (1981)3H-Propyl ß-carboline-3-carboxylate as a selective radioligand for the BZ1 benzodiazepine receptor subclass. J Neurochem 37: 333–341

    PubMed  Google Scholar 

  • Carbonetto ST, Fambrough DM, Muller KJ (1978) Nonequivalence of α-bungarotoxin receptors and acetylcholine receptors in chick sympathetic neurons. Proc Natl Acad Sci USA 75: 1016–1020

    PubMed  Google Scholar 

  • Casalotti SO, Stephenson FA, Barnard EA (1986) Seperate subunits for agonist and benzodiazepine binding in the γ-aminobutyric acidA receptor oligomer. J Biol Chem 261: 15013–15016

    PubMed  Google Scholar 

  • Deng L, Ransom RW, Olsen RW (1986)3H-Muscimol photolabels the γ-aminobutyric acid receptor binding site on a peptide subunit distinct from that labeled with benzodiazepines. Biochem Biophys Res Comm 138: 1308–1315

    PubMed  Google Scholar 

  • Eichinger A, Sieghart W (1984) Photoaffinity labeling of different benzodiazepine receptors at physiological temperature. J Neurochem 43: 1745–1748

    PubMed  Google Scholar 

  • Eichinger A, Sieghart W (1986) Postnatal development of proteins associated with different benzodiazepine receptors. J Neurochem 46: 173–180

    PubMed  Google Scholar 

  • Garrett KM, Tabakoff B (1985) The development of type I and type II benzodiazepine receptors in mouse cortex and cerebellum. Pharmacol Biochem Behav 22: 985–992

    PubMed  Google Scholar 

  • Häring P, Stähli C, Schoch P, Takacs B, Staehelin T, Möhler H (1985) Monoclonal antibodies reveal structural homogeneity of GABAA/benzodiazepine receptors in different brain areas. Proc Natl Acad Sci USA 82: 4837–4841

    PubMed  Google Scholar 

  • Hebebrand J, Friedl W (1987) Phylogenetic receptor research: implications in studying psychiatric and neurological disease. J Psychiatr Res, in press

  • Hebebrand J, Friedl W, Breidenbach B, Propping P (1987) Phylogenetic comparison of the photoaffinity-labeled benzodiazepine receptor subunits. J Neurochem 48: 1103–1108

    PubMed  Google Scholar 

  • Hebebrand J, Friedl W, Unverzagt B, Propping P (1986) Benzodiazepine receptor subunits in avian brain. J Neurochem 47: 790–793

    PubMed  Google Scholar 

  • IUPAC/IUB, Commission on Biochemical Nomenclature (1971) Recommendations. Biochemistry 10: 4825–4826

    Google Scholar 

  • Jalilian Tehrani MH, Barnes EM, Jr (1986) Ontogeny of the GABA receptor complex in chick brain: studies in vivo and in vitro. Dev Brain Res 25: 91–98

    Google Scholar 

  • Kirkness EF, Turner AJ (1986) The γ-aminobutyrate/benzodiazepine receptor from pig brain. Biochem J 233: 259–264

    PubMed  Google Scholar 

  • Kiepner CA, Lippa AS, Benson DI, Sano MC, Beer B (1979) Resolution of two biochemically and pharmacologically distinct benzodiazepine receptors. Pharmacol Biochem Behav 11: 457–462

    PubMed  Google Scholar 

  • Lippa AS, Beer B, Sano MC, Vogel RA, Meyerson LR (1981) Differential ontogeny of type 1 and type 2 benzodiazepine receptors. Life Sci 28: 2343–2347

    PubMed  Google Scholar 

  • Mallorga P, Hamburg M, Tallman JF, Gallager DW (1980) Ontogenetic changes in GABA modulation of brain benzodiazepine binding. Neuropharmacology 19, 405–408

    PubMed  Google Scholar 

  • Market CL, Møller F (1959) Multiple forms of enzymes: tissue, ontogenetic, and species specific patterns. Proc Natl Acad Sci USA 45: 753–763

    Google Scholar 

  • Masters CJ, Homes RS (1974) Isozymes, multiple enzyme forms, and phylogeny. Adv Comp Physiol Biochem 5: 109–195

    PubMed  Google Scholar 

  • Mishina M, Takai T, Imoto K, Noda M, Takahashi T, Numa S, Methfessel C, Sakmann B (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321: 406–411

    PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Olsen RW, Wong EHF, Stauber GB, King RG (1984) Biochemical pharmacology of the γ-aminobutyric acid receptor/ionophore protein. Fed Proc 43: 2773–2778

    PubMed  Google Scholar 

  • Raftery MA, Hunkapiller MW, Strader CD, Hood LE (1980) Acetylcholine receptor: complex of homologous subunits. Science 208: 1454–1457

    PubMed  Google Scholar 

  • Schoch P, Richards JG, Häring P, Takacs B, Stähli C, Staehelin T, Haefely W, Möhler H (1985) Colocalization of GABAA and benzodiazepine receptors in the brain. Nature 314: 168–171

    PubMed  Google Scholar 

  • Sieghart W (1986) Comparison of benzodiazepine receptors in cerebellum and inferior colliculus. J Neurochem 47: 920–923

    PubMed  Google Scholar 

  • Sieghart W, Eichinger A, Riederer P, Jellinger K (1985) Comparison of benzodiazepine receptor binding in membranes from human or rat brain. Neuropharmacology 24: 751–759

    PubMed  Google Scholar 

  • Sieghart W, Karobath M (1980) Molecular heterogeneity of benzodiazepine receptors. Nature 286: 285–287

    PubMed  Google Scholar 

  • Sigel E, Stephenson FA, Mamalaki C, Barnard EA (1983) A gamma-aminobutyric acid/benzodiazepine receptor complex of bovine cerebral cortex. J Biol Chem 258: 6965–6971

    PubMed  Google Scholar 

  • Stephenson FA, Casalotti SO, Mamalaki C, Barnard EA (1986) Antibodies recognizing the GABAA/benzodiazepine receptor including its regulatory sites. J Neurochem 46: 854–861

    PubMed  Google Scholar 

  • Tallman JF (1985) Molecular structure of benzodiazepine receptors. Prog Neuropsychopharmacol Biol Psychiatry 9: 545–549

    PubMed  Google Scholar 

  • Takai T, Noda M, Mishina M, Shimizu S, Furutani Y, Kayano T, Ikeda T, Kubo T, Takahashi H, Takahashi T, Kuno M, Numa S (1985) Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle. Nature 315: 761–764

    PubMed  Google Scholar 

  • Ureta T (1978) The role of isozymes in metabolism: a model of metabolic pathways as the basis for the biological role of isozymes. In: Horecker BL, Stadtman ER (eds) Current topics in cellular regulation, vol 13. Academic Press, New York, pp 233–258

    Google Scholar 

  • Vogel F, Motulsky AG (1986) Man's hemoglobin. In: Vogel F, Motulsky AG (eds) Human Genetics, 2nd edn. Springer, Berlin Heidelberg New York Tokyo, pp 277–302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hebebrand, J., Friedl, W. & Propping, P. The concept of isoreceptors: Application to the nicotinic acetylcholine receptor and the gamma-aminobutyric acidA/benzodiazepine receptor complex. J. Neural Transmission 71, 1–9 (1988). https://doi.org/10.1007/BF01259405

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01259405

Keywords

Navigation