Skip to main content
Log in

Immunohistochemical identification of two types of dopamine neuron in the rat olfactory bulb as seen by serial sectioning

  • Published:
Journal of Neurocytology

Summary

Several neurons around the glomeruli in the rat olfactory bulb contain the enzyme tyrosine hydroxylase as revealed by light and electron microscopic immunohistochemistry. Electron microscopic analysis of serial sections revealed that both superficial tufted cells and small periglomerular neurons were labelled. These results give further support for the view that dopamine neurons in the rat olfactory bulb, from a neuroanatomical point of view, do not represent a homogeneous cell population. Furthermore, taken together with previous results in the literature our findings indicate that, from a transmitter histochemical point of view, neither tufted cells nor periglomerular neurons represent a homogeneous cell population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres, K. H. (1965) Der Feinbau des Bulbus olfactorius der Ratte unter besonderer Berücksichtigung der synaptischen Verbindungen.Zeitschrift für Zellforschung und mikroskopische Anatomie 65, 530–61.

    Google Scholar 

  • Bloom, F. E., Costa, E. &Salmoiraghi, G. C. (1965) Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microiontophoresis.Journal of Pharmacology and Experimental Therapeutics 150, 244–52.

    PubMed  Google Scholar 

  • Björklund, A. &Lindvall, O. (1975) Dopamine in dendrites of substantia nigra neurons: Suggestion for a role in dendritic terminals.Brain Research 83, 531–7.

    PubMed  Google Scholar 

  • Bunney, B. S. &Aghajanian, G. K. (1976) Electrophysical studies of dopamine-innervated cells in the frontal cortex.Advances in Biochemical Psychopharmacology 16, 65–70.

    Google Scholar 

  • Cajal, S. R. Y. (1911)Histologie du Systéme Nerveux de l'Homme et des Vertébrés. Paris: Maloine.

    Google Scholar 

  • Connor, J. D. (1970) Caudate nucleus neurones: correlation of the effects of substantia nigra stimulation with iontophoretic dopamine.Journal of Physiology 208, 691–703.

    PubMed  Google Scholar 

  • Coons, A. H. (1958) Fluorescent antibody methods. InGeneral Cytochemical Methods (edited byDanielli, J. F.), pp. 399–422. New York: Academic Press.

    Google Scholar 

  • Dahlström, A., Fuxe, K., Olson, L. &Ungerstedt, U. (1965) On the distribution and possible function of monoamine nerve terminals in the olfactory bulb of the rabbit.Life Sciences 4, 2071–4.

    PubMed  Google Scholar 

  • Fallon, J. H. &Moore, R. Y. (1978) Catecholamine innervation of the basal forebrain. III. Olfactory bulb, anterior olfactory nuclei, olfactory tubercle and piriform cortex.Journal of Comparative Neurology 180, 533–44.

    PubMed  Google Scholar 

  • Geffen, L. B., Jessel, T. M., Cuello, A. C. &Iversen, L. L. (1976) Release of dopamine from dendrites in rat substantia nigra.Nature 260, 258–60.

    PubMed  Google Scholar 

  • Haberly, L. B. &Price, J. E. (1977) The axonal projection patterns of the mitral and tufted cells of the olfactory bulb in the rat.Brain Research 129, 152–7.

    PubMed  Google Scholar 

  • Haeász, N., Ljungdahl, A., Hökfeet, T., Johansson, O., Goldstein, M., Park, D. &Biberfeld, P. (1977) Transmitter histochemistry of the rat olfactory bulb. I. Immunohistochemical localization of monoamine synthesizing enzymes. Support for intrabulbar, periglomerular dopamine neurons.Brain Research 126, 455–74.

    PubMed  Google Scholar 

  • Halász, N., Ljungdahl, Å. &Hökfelt, T. (1978) Transmitter histochemistry of the rat olfactory bulb. II. Fluorescence histochemical, autoradiographic and electron microscopic localization of monoamines.Brain Research 154, 253–71.

    PubMed  Google Scholar 

  • Halász, N., Ljungdahl, Å. &Hökfelt, T. (1979) Transmitter histochemistry of the rat olfactory bulb. III. Autoradiographic localization of (3H) GABA.Brain Research 167, 221–40.

    PubMed  Google Scholar 

  • Hökfelt, T., Halász, N., Ljungdahl, Å., Johansson, O., Goldstein, M. &Park, D. (1975) Histochemical support for a dopaminergic mechanism in the dendrites of certain periglomerular cells in the rat olfactory bulb.Neuroscience Letters 1, 85–90.

    Google Scholar 

  • Kitai, S. T., Sugimori, M. &Kocsis, J. D. (1976) Excitatory nature of dopamine in the nigro-caudate pathway.Experimental Brain Research 24, 351–63.

    Google Scholar 

  • Korf, J., Zieleman, M. &Westerink, B. H. C. (1976) Dopamine release in substantia nigra?Nature 260, 257–8.

    PubMed  Google Scholar 

  • Lichtensteiger, W. (1966) Uptake of norepinephrine in periglomerular cells of the olfactory bulb in the mouse.Nature 210, 955–6.

    PubMed  Google Scholar 

  • Lidbrink, P., Jonsson, G. &Fuxe, K. (1974) Selective reserpine-resistant accumulation of catecholamines in central dopamine neurones after DOPA administration.Brain Research 67, 439–56.

    PubMed  Google Scholar 

  • McLennan, H. &York, D. H. (1967) The action of dopamine on neurones of the caudate nucleus.Journal of Physiology 189, 393–402.

    PubMed  Google Scholar 

  • Pinching, A. J. &Brooke, R. N. L. (1973) Electron microscopy of single cells in the olfactory bulb using Golgi impregnation.Journal of Neurocytology 2, 157–70.

    PubMed  Google Scholar 

  • Pinching, A. J. &Powell, T. P. S. (1971) The neuron types of the glomerular layer of the olfactory bulb.Journal of Cell Science 9, 304–45.

    Google Scholar 

  • Price, J. L. &Powell, T. P. S. (1970) The synaptology of the granule cells of the olfactory bulb.Journal of Cell Science 7, 125–55.

    PubMed  Google Scholar 

  • Priestley, J. V., Kelly, J. S. &Cuello, A. C. (1979) Uptake of (3H) dopamine in periglomerular cells of the rat olfactory bulb: an autoradiographic study.Brain Research 165, 149–55.

    PubMed  Google Scholar 

  • Ribak, C. E., Vaughn, J. E., Saito, K., Barber, R. &Roberts, E. (1977) Glutamate decarboxylase localization in neurons of the olfactory bulb.Brain Research 126, 1–18.

    PubMed  Google Scholar 

  • Shepherd, G. M. (1972) Synaptic organization of the mammalian olfactory bulb.Physiological Reviews 52, 864–917.

    PubMed  Google Scholar 

  • Siggins, G. R. (1978) Electrophysiological role of dopamine in striatum: excitatory or inhibitory? InPsychopharmacology: A Generation of Progress (edited byIpton, M. A., DiMascio, A. andKillam, K. F.), pp. 143–157. New York: Raven Press.

    Google Scholar 

  • Sternberger, L. A. (1974)Immunocytochemistry. Englewood Cliffs, N.J.: Prentice-Hall.

    Google Scholar 

  • White, E. L. (1972) Synaptic organization in the olfactory glomerulus of the mouse.Brain Research 37, 69–80.

    Google Scholar 

  • White, E. L. (1973) Synaptic organization of the mammalian olfactory glomerulus: new findings including an intraspecific variation.Brain Research 60, 299–313.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halász, N., Johansson, O., Hökfelt, T. et al. Immunohistochemical identification of two types of dopamine neuron in the rat olfactory bulb as seen by serial sectioning. J Neurocytol 10, 251–259 (1981). https://doi.org/10.1007/BF01257970

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01257970

Keywords

Navigation