Skip to main content
Log in

Antipsychotic drugs and dopamine-mediated responses in Aplysia neurons

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

The effect of antipsychotic drugs was tested on responses to micro-electrophoretically applied dopamine, acetylcholine and 5-hydroxy-tryptamine in identified neurons of the marine gastropod Aplysia californica. Fluphenazine was able to depress the response to DA in concentration of 10μM, with 100μM DA-responses of many neurons were blocked completely. Thioridazine (10 and 100μM) and haloperidol (50μM) were also effective in depressing DA-responses, while the non-antipsychotic phenothiazines mepazine (10 and 100μM) and promethazine (100μM) had only a slight action on DA-receptors. ACh-and 5-HT-responses were slightly affected only by high concentrations after long lasting perfusion. The investigated drugs had no persistent or only an insignificant effect on resting membrane potential and amplitude of action potentials of the neurons. With haloperidol depolarizing afterpotentials leading to double discharges were observed in some neurons. In a few instances spontaneous EPSPs disappeared with the DA-response under the influence of anti-psychotic drugs.

The results render a direct neurophysiological evidence for the blockade of DA-receptors by antipsychotic drugs in correspondence to their clinical efficacy and agree with data from clinical observations and obtained in neurochemical, behavioral and indirect neurophysiological experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andén, N.-E., Butcher, S. G., Corrodi, H., Fuxe, K., Ungerstedt, U.: Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Europ. J. Pharmacol.11, 303–314 (1970).

    Google Scholar 

  • Andén, N.-E., Corrodi, H., Fuxe, K., Ungerstedt, U.: Importance of nervous impulse flow for the neuroleptic induced increase in amine turnover in central dopamine neurons. Europ. J. Pharmacol.15, 193–199 (1971).

    Google Scholar 

  • Andén, N.-E., Dahlström, A., Fuxe, K., Hökfelt, T.: The effect of haloperidol and chlorpromazine on the amine levels of central monoamine neurones. Acta physiol. scand.68, 419–420 (1966).

    Google Scholar 

  • Ascher, P.: Inhibitory and excitatory effects of dopamine on Aplysia neurones. J. Physiol.225, 173–209 (1972).

    PubMed  Google Scholar 

  • Ayd, F. J.: A survey of drug-induced extrapyramidal reaction. J. Amer. med. Ass.175, 1054–1060 (1961).

    Google Scholar 

  • Besson, M. J., Cheramy, A., Glowinski, J.: Effects of some psychotropic drugs on dopamine synthesis in the rat striatum. J. Pharmacol. Exp. Therap.177, 196–205 (1971).

    Google Scholar 

  • Brown, J. H., Makman, M. H.: Influence of neuroleptic drugs and apomorphine on dopamine-sensitive adenylate cyclase of retina. J. Neurochem.21, 477–479 (1973).

    PubMed  Google Scholar 

  • Bunney, B. S., Aghajanian, G. K.: Evidence for drug actions on both pre-and postsynaptic catecholamine receptors in the CNS. In: Pre-and Postsynaptic Receptors (Usdin, E., Bunney, W. E., eds.), Modern Pharmacology-Toxicology, Vol. 3, pp. 89–120. New York: M. Dekker. 1975.

    Google Scholar 

  • Bunney, B. S., Walters, J. R., Roth, R. H., Aghajanian, G. K.: Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Therap.185, 560–571 (1973).

    Google Scholar 

  • Carlsson, A., Lindqvist, M.: Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta pharmacol. et toxicol.20, 140–144 (1963).

    Google Scholar 

  • Cole, J. O., Clyde, D. J.: Extrapyramidal side effects and clinical response to the phenothiazines. Rev. can. Biol.20, 565–574 (1961).

    PubMed  Google Scholar 

  • Dahl, E., Falck, B., von Mecklemburg, C., Myhrberg, H., Rosengren, E.: Neuronal localization of dopamine and 5-hydroxytryptamine in some molluscs. Z. Zellforsch.71, 489–498 (1966).

    PubMed  Google Scholar 

  • Faber, D. S., Klee, M. R.: Strychnine interactions with acetylcholine, dopamine and serotonine receptors in Aplysia neurons. Brain Res.65, 109–126 (1974).

    PubMed  Google Scholar 

  • Faber, D. S., Klee, M. R., Heiss, W,-D.: Interaction of strychnine with acetylcholine and dopamine receptors in Aplysia neurones. XXV. Int. Congr. Physiol. Sci. Munich9, 167 (1971).

    Google Scholar 

  • Feltz, D.: Sensitivity to haloperidol of caudate neurones excited by nigral stimulation. Europ. J. Pharmacol.14, 360–364 (1971).

    Google Scholar 

  • Frazier, W. T., Kandel, E. R., Kupfermann, I., Waziri, R., Coggeshall, R. E.: Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia californica. J. Neurophysiol.30, 1288 to 1351 (1967).

    Google Scholar 

  • Gerschenfeld, H. M.: Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Physiol. Rev.53, 1–119 (1973).

    PubMed  Google Scholar 

  • Gerschenfeld, H. M., Stefani, E.: An electrophysiological study of 5-hydroxytryptamine receptors of neurones in the moluscan nervous system. J. Physiol.185, 684–700 (1966).

    PubMed  Google Scholar 

  • Gey, K. F., Pletscher, A.: Acceleration of turnover of14C-catecholamines in rat brain by chlorpromazine. Experientia24, 335–336 (1968).

    PubMed  Google Scholar 

  • Gruener, R., Narahashi, T.: The mechanism of excitability blockade by chlorpromazine. J. Pharmacol. Exp. Therap.181, 161–170 (1972).

    Google Scholar 

  • Haase, H. J., Janssen, P. A. J.: The Action of Neuroleptic Drugs. Amsterdam: North Holland. 1965.

    Google Scholar 

  • Heiss, W.-D., Hoyer, J., Heilig, P.: Die Wirkung von Psychopharmaka auf visuell evozierte Potentiale der Katze. Vision Res.9, 507–513 (1969).

    PubMed  Google Scholar 

  • Hille, B.: Common mode of action of three agents that decrease the transient change in sodium permeability in nerves. Nature210, 1220 to 1222 (1966).

    Google Scholar 

  • Hökfelt, J., Ljungdahl, A., Fuxe, K., Johansson, O.: Dopamine nerve terminals in the rat limbic cortex: aspects of the dopamine hypothesis of schizophrenia. Science184, 177–179 (1974).

    PubMed  Google Scholar 

  • Horn, A. S., Post, M. L., Kennard, O.: Dopamine receptor blockade and the neuroleptics, a crystallographic study. J. Pharm. Pharmac.27, 553 to 563 (1975).

    Google Scholar 

  • Horn, A. S., Snyder, S. H.: Chlorpromazine and dopamine: conformational similarities that correlate with the antischizophrenic activity of phenothiazine drugs. Proc. Nat. Acad. Sci. U.S.A.68, 2325–2328 (1971).

    Google Scholar 

  • Hornykiewicz, O.: Dopamine (3-hydroxytyramine) and brain function. Pharmacol. Rev.18, 925–964 (1966).

    PubMed  Google Scholar 

  • Hoyer, J., Klee, M. R., Heiss, W.-D.: Voltage clamp analysis of the action of a benzodiazepine on neurons in Aplysia californica. In: Physiology of the Gastropod Brain (Salánki, J., ed.). Budapest: Akadémiai Kiadó. 1976 (in press).

    Google Scholar 

  • Iversen, L. L.: Dopamine receptors in the brain. Science188, 1084–1089 (1975).

    PubMed  Google Scholar 

  • Janssen, P. A. J., Niemegeers, C. J. E., Schellekens, K. H. L., Lanaerts, F. M.: Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Part IV: An improved experimental design for measuring the inhibitory effects of neuroleptic drugs on amphetamineor apomorphine-induced “clawing and agitation” in rats. Arzneimitt.-Forsch. (Drug Res.)17, 841–854 (1967).

    Google Scholar 

  • Kandel, E. R., Kupfermann, I.: The functional organization of invertebrate ganglia. Ann. Rev. Physiol.32, 193–258 (1970).

    Google Scholar 

  • Karobath, M., Leitich, H.: Antipsychotic drugs and dopamine stimulated adenylate cyclase prepaired from corpus striatum of rat brain. Proc. Nat. Acad. Sci. U.S.A.71, 2915–2918 (1974).

    Google Scholar 

  • Kebabian, J. W., Petzold, G. L., Greengard, P.: Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor”. Proc. Nat. Acad. Sci. U.S.A.69, 2145–2149 (1972).

    Google Scholar 

  • Kehoe, J. S.: Three acethylcholine receptors in Aplysia neurones. J. Physiol.225, 115–146 (1972).

    PubMed  Google Scholar 

  • Klee, M. R., Faber, D. S., Heiss, W.-D.: Strychnine-and pentylenetetrazol-induced changes of excitability in Aplysia neurons. Science179, 1133 to 1136 (1973).

    Google Scholar 

  • Klee, M. R., Heiss, W.-D.: Strychnine effects on cell membrane properties. Electroenceph. clin. Neurophysiol.27, 683–684 (1969).

    Google Scholar 

  • Lemberger, L., Witt, E. D., Davis, J. M., Kopin, I. J.: The effects of haloperidol and chlorpromazine on amphetamine metabolism and amphetamine stereotype behavior in the rat. J. Pharmacol. Exp. Therap.174, 428–433 (1970).

    Google Scholar 

  • Matthysse, St.: Antipsychotic drug actions: a clue to the neuropathology of schizophrenia? Federation Proc.32, 200–205 (1973).

    Google Scholar 

  • Miller, R., Hiley, R.: Antimuscarinic actions of neuroleptic drugs. In: Dopaminergic Mechanisms (Calne, D., Chase, T. N., Barbeau, A., eds.), Advances in Neurology, Vol. 9, pp. 141–154. New York: Raven Press. 1975.

    Google Scholar 

  • Miller, R. J., Horn, A. S., Iversen, L. L.: The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3′, 5′-monophosphate production in rat neostriatum and limbic forebrain. Mol. Pharmacol.10, 759–766 (1974).

    Google Scholar 

  • Nybäck, H., Borzecki, Z., Sedvall, G.: Accumulation and disappearance of catecholamines formed from tyrosme-14C in mouse brain; effect of some psychotropic drugs. Europ. J. Pharmacol.4, 395–403 (1968).

    Google Scholar 

  • O'Keeffe, R., Sharman, D. F., Vogt, M.: Effects of drugs used in psychoses on cerebral dopamine metabolism. Br. J. Pharmacol.38, 287–304 (1970).

    PubMed  Google Scholar 

  • Da Prada, M., Pletscher, A.: Acceleration of the cerebral dopamine turnover by chlorpromazine. Experientia22, 465–466 (1966).

    PubMed  Google Scholar 

  • Sedvall, G., Fyrö, B., Nybäck, H., Wiesel, F. A.: Actions of dopaminergic antagonists in the striatum. In: Dopaminergic Mechanisms (Calne, D., Chase, T. N., Barbeau, A., eds.), Advances in Neurology, Vol. 9, pp. 131–140. New York: Raven Press. 1975.

    Google Scholar 

  • Seeman, P., Lee, T.: Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science188, 1217–1219 (1975).

    PubMed  Google Scholar 

  • Seeman, P., Staiman, A., Chan-Wong, M.: The nerve impulse-blocking actions of tranquillizers and the binding of neuroleptics to synaptosome membranes. J. Pharmacol. Exp. Therap.190, 123–130 (1974).

    Google Scholar 

  • Snyder, S. H.: Catecholamines in the brain as mediators of amphetamine psychosis. Arch. Gen. Psychiat.27, 169–179 (1972).

    PubMed  Google Scholar 

  • Snyder, S. H., Banerjee, S. P., Yamamura, H. I., Grennberg, D.: Drugs, neurotransmitters and schizophrenia. Science184, 1243–1253 (1974).

    Google Scholar 

  • Sweeney, D.: Dopamine: its occurrence in molluscan ganglia. Science139, 1051 (1963).

    PubMed  Google Scholar 

  • Tauc, L.: Physiology of the nervous system. In: Physiology of Molluscs (Wilbur, K. M., Yonge, C. M., eds.), Vol. I, pp. 387–454. New York: Academic Press. 1966.

    Google Scholar 

  • Tauc, L.: Transmission in invertebrate and vertebrate ganglia. Physiol. Rev.47, 521–593 (1967).

    PubMed  Google Scholar 

  • Thierry, A. M., Stinus, L., Blanc, G., Glowinski, J.: Some evidence for the existence of dopaminergic neurones in the rat cortex. Brain Res.,50, 230–234 (1973).

    PubMed  Google Scholar 

  • Walker, R. J., Woodruff, G. N., Glaizner, D., Sedden, C. B., Kerkut, G. A.: The pharmacology of Helix dopamine receptors of specific neurones in the snail Helix aspera. Comp. Biochem. Physiol.24, 453–469 (1968).

    Google Scholar 

  • Willows, A. O. D.: Gastropod nervous system as a model experimental system in neurobiological research. Federation Proc.32, 2215–2223 (1973).

    Google Scholar 

  • Woodruff, G. N., Walker, R. J., Kerkut, G. A.: Actions of ergometrine on catecholamine receptors in the guinea-pig vas deferens and in the snail brain. Comp. gen. Pharmac.1, 54–60 (1970).

    Google Scholar 

  • York, D. H.: Dopamine receptor blockade—a central action of chlorpromazine on striatal neurones. Brain Res.37, 91–99 (1972).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the österreichischen Fonds zur Förderung der wissenschaftlichen Forschung. —A preliminary report of a part of the results was published in Experientia30, 1318–1320 (1974).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heiss, W.D., Hoyer, J. & Thalhammer, G. Antipsychotic drugs and dopamine-mediated responses in Aplysia neurons. J. Neural Transmission 39, 187–208 (1976). https://doi.org/10.1007/BF01256509

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01256509

Keywords

Navigation