Skip to main content
Log in

Adenosine and related nucleotides alter calcium uptake in depolarized synaptosomes of torpedo electric organ

  • Original Papers
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Calcium has been shown to enter cholinergic synaptosomes transiently during potassium-induced depolarization, in which ACh and ATP are released together. Because junctional ATP is rapidly hydrolyzed by extracellular ATPases, I studied and compared the roles of ATP, ADP, AMP, and adenosine (Ade) on the control of calcium uptake during depolarization.

Pure cholinergic synaptosomes of Torpedo fish electric organ were depolarized by high potassium concentrations and the amount of calcium uptake was then measured in the presence of equal concentrations of Ade and its related nucleotides. Calcium uptake was more inhibited when the nucleotide was less phosphorylated. Thus, Ade was the greatest inhibitor.

Because Ade is quickly and actively taken up from the extracellular medium by synaptosomes and converted intracellularly to ATP, I also measured the capacity of Ade, after its initial inhibitory action, to reactivate the calcium uptake. After a short preincubation with Ade, the later uptake of calcium was enhanced. The combined results support a complete role of adenosine and related nucleotides in the control of calcium movement across the presynaptic membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alnaes, E., Rahamimoff, R.: On the role of mitochondria in transmitter release from motor nerve terminals. J. Physiol. (Lond.)248, 285–306 (1975).

    Google Scholar 

  • Blaustein, M. P.: Effects of potassium, veratridine and scorpion venom on calcium accumulation and transmitter release by nerve terminalsin vitro. J. Physiol. (Lond.)247, 617–655 (1975).

    Google Scholar 

  • Burnstock, G.: Purinergic nerves. Pharmacol. Rev.24, 509–581 (1972).

    PubMed  Google Scholar 

  • Burnstock, G.: Purinergic transmission. In: Handbook of Psychopharmacology, Vol. 5 (Iversen, L. L., Iversen, S. D., Snyder, S. H., eds.), pp. 131–195. New York-London: Plenum Press. 1975.

    Google Scholar 

  • Dowdall, M. J.: Adenine nucleotides in cholinergic transmission: Presynaptic aspects. In: Nucleotides and Neurotransmission. Conferences on Neurobiologie de Gif. Gif, 1977 (Abst.), pp. 7–8. 1977.

  • Dowdall, M. J., Boyne, A. F., Whittaker, V. P.: Adenosine triphosphate, a constituent of cholinergic synaptic vesicles. Biochem. J.140, 1–12 (1974).

    PubMed  Google Scholar 

  • Hodgkin, A. L., Huxley, A. F.: The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Lond.)116, 473–496 (1952).

    Google Scholar 

  • Israel, M., Meunier, F. M.: The release of ATP triggered by transmitter action and its possible physiological significance: Retrograde transmission. J. Physiol. (Paris)74, 485–490 (1978).

    Google Scholar 

  • Israel, M., Lesbats, B., Meunier, F. M., Stinnakre, J.: Postsynaptic release of adenosine triphosphate induced by single impulse transmitter action. Proc. R. Soc. Lond.B 193, 461–468 (1976 a).

    Google Scholar 

  • Israel, M., Manaranche, R., Mastour-Frachon, P., Morel, N.: Isolation of pure cholinergic nerve endings from the electric organ ofTorpedo marmorata. Biochem. J.160, 113–115 (1976 b).

    PubMed  Google Scholar 

  • Israel, M., Lesbats, B., Manaranche, R., Marsal, J., Mastour-Frachon, P., Meunier, F. M.: Related changes in amounts of Ach and ATP in resting and active Torpedo nerve electroplaque synapses. J. Neurochem.28, 1259–1267 (1977).

    PubMed  Google Scholar 

  • Israel, M., Lesbats, B., Manaranche, R., Meunier, F. M., Frachon, P.: Retrograde inhibition of transmitter release by ATP. J. Neurochem.34, 923–932 (1980).

    PubMed  Google Scholar 

  • Kendrick, N. C., Blaustein, M. P., Fried, R. C., Ratzlaff, R. W.: ATP-dependent calcium storage in presynaptic nerve terminals. Nature265, 246–249 (1977).

    PubMed  Google Scholar 

  • Kuroda, Y., McIlwain, H.: Uptake and release of (14C) adenine derivatives at beds of mammalian cortical synaptosomes in a superfusion system. J. Neurochem.22, 691–699 (1974).

    PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275 (1951).

    PubMed  Google Scholar 

  • Meunier, F. M., Morel, N.: Adenosine uptake by cholinergic synaptosomes from Torpedo electric organ. J. Neurochem.31, 845–851 (1978).

    PubMed  Google Scholar 

  • Meunier, F. M., Israel, M., Lesbats, B.: Release of ATP from stimulated nerve electroplaque junctions. Nature257, 407–408 (1975).

    PubMed  Google Scholar 

  • Nagy, A., Baker, R. R., Morris, S. J., Whittaker, V. P.: The preparation and characterization of synaptic vesicles of high purity. Brain Res.109, 285–309 (1976).

    PubMed  Google Scholar 

  • Nagy, A., Shuster, T. A., Rosenberg, M. D.: Adenosine triphosphatase activity at the external surface of chicken brain synaptosomes. J. Neurochem.40, 226–234 (1983).

    PubMed  Google Scholar 

  • Ribeiro, J. A., Walker, J.: The effects of ATP and ADP on transmission at the rat and frog neuromuscular junctions. Br. J. Pharmacol.54, 213–218 (1975).

    PubMed  Google Scholar 

  • Ribeiro, J. A., Sa-Almeida, A. M., Namorado, J. M.: Adenosine and adenosine triphosphate decrease45Ca uptake by synaptosomes stimulated by potassium. Biochem. Pharmacol.28, 1297–1300 (1979).

    PubMed  Google Scholar 

  • Rosenblatt, D. E., Lauter, C. J., Trams, E. G.: Deficiency of a Ca2+-ATPase in brains of seizure prone mice. J. Neurochem.27, 1299–1304 (1976).

    PubMed  Google Scholar 

  • Satchell, D. D., Lynch, A., Burke, P. M., Burnstock, G.: Potentiation of the effects of exogenously applied ATP and purinergic nerve stimulation on the guinea pig taenia coli by dipyridamole and hexobenzidine. Eur. J. Pharmacol.19, 343–350 (1972).

    PubMed  Google Scholar 

  • Sawynok, J., Jhamandas, K. H.: Inhibition of acetylcholine release from cholinergic nerves by adenosine, adenosine nucleotides, and morphine: Antagonism by theophylline. J. Pharmacol. Exp. Ther.197, 379–390 (1976).

    PubMed  Google Scholar 

  • Shubert, P., Lee, K., Kreutzberg, G. W.: Formation and function of adenosine in the CNS. I. Release and modulatory action. Proc. Int. Soc. Neurochem. Nottingham 1981, pp. 111. 1981.

  • Shillinsky, E. M.: On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals. J. Physiol. (Lond.)247, 145–162 (1975).

    Google Scholar 

  • Vizi, E. S., Knoll, J.: The inhibitory effect of adenosine and related nucleotides on the release of acetylcholine. Neuroscience1, 391–398 (1976).

    PubMed  Google Scholar 

  • Weller, M., Morgan, I. G.: A possible role of the phosphorylation of synaptic membrane proteins in the control of calcium ion permeability. Biochem. Biophys. Acta465, 527–534 (1977).

    PubMed  Google Scholar 

  • White, T. D.: Release of ATP from a synaptosomal preparation by elevated extracellular K+ and by veratridine. J. Neurochem30, 329–336 (1978).

    PubMed  Google Scholar 

  • White, T. D., Potter, P., Wonnacott, S.: Depolarization-induced release of ATP from cortical synaptosomes is not associated with acetylcholine release. J. Neurochem.34, 1109–1112 (1980).

    PubMed  Google Scholar 

  • Whittaker, V. P., Essman, W. E., Dowe, G. H. C.: The isolation of pure cholinergic synaptic vesicles from the electric organs of Elasmobranch fish of the familyTorpedinidae. Biochem. J.128, 833–846 (1972).

    PubMed  Google Scholar 

  • Zimmermann, H.: Turnover of adenine nucleotides in cholinergic synaptic vesicles of the Torpedo electric organ. Neuroscience3, 827–836 (1978).

    PubMed  Google Scholar 

  • Zimmermann, H., Dowdall, M. J., Lane, D. A.: Purine salvage at the cholinergic nerve endings of the Torpedo electric organ: The central role of adenosine. Neuroscience4, 979–993 (1979).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quintana, J. Adenosine and related nucleotides alter calcium uptake in depolarized synaptosomes of torpedo electric organ. J. Neural Transmission 64, 271–284 (1985). https://doi.org/10.1007/BF01256472

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01256472

Keywords

Navigation