Skip to main content
Log in

Large GABA cells of chick ectostriatum: anatomical evidence suggesting a double GABAergic disinhibitory mechanism. An electron microscopic immunocytochemical study

  • Published:
Journal of Neurocytology

Summary

In an extension of our previous light microscopic observations, a type of neuron which shows GABA-like immunoreactivity was identified and described in the ectostriatal core of young domestic chicks, using pre- and postembedding electron microscopic immunocytochemistry. Large GABA immunopositive (GABA+) cells are characterized by an ovoidal or polygonal soma of 12–16 μm diameter, uniformly distributed nuclear chromatin, a prominent Golgi apparatus and an abundance of rough endoplasmic reticulum. In addition to axodendritic terminals, large GABA neurons receive numerous axosomatic synapses of both symmetrical and asymmetrical types covering a substantial part of their perikaryal surface. Axosomatic terminals with symmetrical junctions are usually immunoreactive to GABA whereas the boutons with asymmetrical synaptic specialization are immunonegative. GABA+ boutons also synapse with dendritic spine necks presumably belonging to projection neurons. These terminals usually contain loosely packed synaptic vesicles without any marked accumulation near the synaptic cleft. Large GABA+ terminals with densely packed vesicles were found to synapse with axon hillocks. Based on known descriptions of ectostriatal cytoarchitecture and synaptology, it is suggested that the GABA+ cells of chick ectostriatum represent inhibitory interneurons which may be equivalent to GABAergic non-pyramidal neuronal types of mammalian visual cortex. GABA+ axosomatic synapses afferent to large GABA cells are likely to form the structural basis for a disinhibitory mechanism in the avian ectostriatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagnoli, P., Fontanesi, G., Streit, P., Domenici, L. &Alesci, R. (1989) Changing distribution of GABA-like immunoreactivity in pigeon visual areas during the early posthatching period and effects of retinal removal on tectal GABAergic systems.Visual Neuroscience 3, 491–508.

    PubMed  Google Scholar 

  • Bartheld, C. S. Von, Code, R. A. &Rubel, E. W. (1989) GABAergic neurons in brainstem auditory nuclei of the chick: distribution, morphology and connectivity.Journal of Comparative Neurology 287, 470–83.

    PubMed  Google Scholar 

  • Benowitz, L. I. (1980) Functional organization of the avian telencephalon. InComparative Neurology of the Telencephalon (edited byEbbesson, S. O. E.) pp. 389–421. New York and London: Plenum.

    Google Scholar 

  • Benowitz, L. I. &Karten H. J. (1976) Organization of the tectofugal visual pathway in the pigeon: a retrograde transport study.Journal of Comparative Neurology 167, 503–20.

    PubMed  Google Scholar 

  • Bilkey, D. K. &Goddard, G. V. (1985) Medial septal facilitation of hippocampal granule cell activity is mediated by inhibition of inhibitory interneurons.Brain Research 361, 99–106.

    PubMed  Google Scholar 

  • Cherkin, A. (1969) Kinetics of memory consolidation: role of amnestic treatment parameters.Proceedings of the National Academy of Sciences (USA) 63, 1094–101.

    Google Scholar 

  • Csillag, A., Bourne, R. C., Patel, S. N., Stewart, M. G. &Tömböl, T. (1989) Localization of GABA-like immunoreactivity in the ectostriatum of domestic chicks: GABA immunocytochemistry combined with Golgi impregnation.Journal of Neurocytology 18, 369–79.

    PubMed  Google Scholar 

  • Csillag, A., Stewart, M. G., Curtis, E. M. &Rose, S. P. R. (1986) GABAergic structures in the chick forebrain. An autoradiographic study combined with GABA-immunocytochemistry.Society for Neuroscience Abstracts 12, 443.

    Google Scholar 

  • Csillag, A., Stewart, M. G. &Curtis, E. M. (1987) GABAergic structures in the chick telencephalon: GABA immunocytochemistry combined with light and electron microscope autoradiography, and Golgi impregnation.Brain Research 437, 283–97.

    PubMed  Google Scholar 

  • Domenici, L., Waldvogel, H-J., Matute, C. &Streit, P. (1988) Distribution of GABA-like immunoreactivity in the pigeon brain.Neuroscience 25, 931–50.

    PubMed  Google Scholar 

  • Freund, T. F. &Antal, M. (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus.Nature 336, 170–3.

    PubMed  Google Scholar 

  • Freund, T. F., Martin, K. A. C., Smith, A. D. &Somogyi, P. (1983) Glutamate decarboxylase-immunoreactive terminals of Golgi impregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of the cat's visual cortex.Journal of Comparative Neurology 221, 263–78.

    PubMed  Google Scholar 

  • Gabbott, P., Somogyi, J., Stewart, M. G. &Hámori, J. (1986) GABA-immunoreactive neurons in the rat cerebellum: a light and electron microscope study.Journal of Comparative Neurology 251, 474–90.

    PubMed  Google Scholar 

  • Granda, R. H. &Crossland, W. J. (1989) GABA-like immunoreactivity of neurons in the chicken diencephalon and mesencephalon.Journal of Comparative Neurology 287, 455–69.

    PubMed  Google Scholar 

  • Hall, K., Brauth, S. E. &Kitt, C. A. (1984) Retrograde transport of [3H]GABA in the striatotegmental system of the pigeon.Brain Research 310, 157–63.

    PubMed  Google Scholar 

  • Hámori, J., Takács, J., Verley, R., Petrusz, P. &Farkas-Bargeton, E. (1990) Plasticity of GABA- and of glutamate-containing terminals in the mouse thalamic ventrobasal complex deprived of vibrissal afferents. An immunogold — electron microscopic study.Journal of Comparative Neurology 302, 739–48.

    PubMed  Google Scholar 

  • Hodgson, A. J., Penke, B., Erdei, A., Chubb, I. W. &Somogyi, P. (1985) Antiserum to γ-aminobutyric acid. I. Production and characterisation using a new model system.Journal of Histochemistry and Cytochemistry 33, 229–39.

    PubMed  Google Scholar 

  • Hodos, W. &Karten, H. J. (1970) Visual intensity and pattern discrimination deficits after lesions of ectostriatum in pigeons.Journal of Comparative Neurology 140, 53–68.

    PubMed  Google Scholar 

  • Horn, G. (1985)Memory, Imprinting and the Brain: An Inquiry into Mechanisms. Oxford: Clarendon.

    Google Scholar 

  • Hunt, S. P. &Künzle, H. (1976) Selective uptake and transport of label within three identified neuronal systems after injection of3H-GABA into the pigeon optic tectum: an autoradiographic and Golgi study.Journal of Comparative Neurology 170, 173–90.

    PubMed  Google Scholar 

  • Jalilian Tehrani, M. H. &Barnes, E. M. Jr. (1986) Ontogeny of the GABA receptor complex in chick brain: studiesin vivo andin vitro.Developmental Brain Research 25, 91–8.

    Google Scholar 

  • Jong, Y-J., Thampy, K. G. &Barnes, E. M. Jr. (1986) Ontogeny of GABAergic neurons in chick brain: studiesin vivo andin vitro.Developmental Brain Research 25, 83–90.

    Google Scholar 

  • Kallén, B. (1962) Embryogenesis of brain nuclei in the chick telencephalon.Ergebnisse der Anatomie und Entwicklungsgeschichte 36, 62–82.

    Google Scholar 

  • Karten, H. J. &Hodos, W. (1970) Telencephalic projections of the nucleus rotundus in the pigeon (Columba livia).Journal of Comparative Neurology 140, 35–52.

    PubMed  Google Scholar 

  • Krnjević, K., Ropert, N. &Casullo, J. (1988) Septohippocampal disinhibition.Brain Research 438, 182–92.

    PubMed  Google Scholar 

  • Müller, C. M. (1987) γ-aminobutyric acid immunoreactivity in brainstem auditory nuclei of the chicken.Neuroscience Letters 77, 272–6.

    PubMed  Google Scholar 

  • Müller, C. M. (1988) Distribution of GABAergic perikarya and terminals in the centres of the higher auditory pathway of the chicken.Cell and Tissue Research 252, 99–106.

    PubMed  Google Scholar 

  • Müller, C. M. &Scheich, H. (1987) GABAergic inhibition increases the neuronal selectivity to natural sounds in the avian auditory forebrain.Brain Research 414, 376–80.

    PubMed  Google Scholar 

  • Nixdorf, B. E. (1989) Ultrastructural analysis of the development and maturation of synapses and subsynaptic structures in the ectostriatum of the zebra finch.Journal of Comparative Neurology 290, 472–86.

    PubMed  Google Scholar 

  • Nixdorf, B. E. &Bischof, H. -J. (1982) Afferent connections of the ectostriatum and visual Wulst in the zebra finch (Taeniopygia guttata castanotis Gould) — an HRP study.Brain Research 248, 9–17.

    PubMed  Google Scholar 

  • Rose, S. P. R. (1985) Passive avoidance training in the chick: a model for the analyis of the cell biology of memory storage. InNeural Mechanisms of Conditioning (edited byAlkon, D. L. &Woody, C. D.) pp. 232–48. New York: Plenum.

    Google Scholar 

  • Somogyi, P. &Hodgson, A. J. (1985) Antiserum to γ-aminobutyric acid. III. Demonstration of GABA in Golgi-impregnated neurons and in conventional electron microscopic sections of cat striate cortex.Journal of Histochemistry and Cytochemistry 33, 249–57.

    PubMed  Google Scholar 

  • Somogyi, P., Hodgson, A. J., Chubb, I. W., Penke, B. &Erdei, A. (1985) Antiserum to gamma-aminobutyric acid. II. Immunocytochemical application to the central nervous system.Journal of Histochemistry and Cytochemistry 33, 240–8.

    PubMed  Google Scholar 

  • Tömböl, T., Maglóczky, Zs., Stewart, M. G. &Csillag, A. (1988) The structure of chicken ectostriatum. I. Golgi study.Journal für Hirnforschung 29, 525–46.

    Google Scholar 

  • Watanabe, M., Ito, H. &Ikushima, M. (1985) Cytoarchitecture and ultrastructure of the avian ectostriatum: afferent terminals from the dorsal telencephalon and some nuclei in the thalamus.Journal of Comparative Neurology 236, 241–57.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csillag, A. Large GABA cells of chick ectostriatum: anatomical evidence suggesting a double GABAergic disinhibitory mechanism. An electron microscopic immunocytochemical study. J Neurocytol 20, 518–528 (1991). https://doi.org/10.1007/BF01252278

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01252278

Keywords

Navigation