Skip to main content
Log in

Muscarinic cholinoceptors mediate neurally evoked pigment aggregation in glass catfish melanophores

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Sympathetic innervation to the melanophores of a siluroidParasilurus has been the sole instance of such innervation among lower vertebrates, in which the peripheral transmission to the effector cells is peculiarly cholinergic (Fujii andMiyashita, 1976). In an effort to find a similar case, we studied the nature of transmission to melanophores of a glass catfishKryptopterus.

Electrical nervous stimulation brought about melanosome aggregation in the melanophores. While catecholamines were found ineffective, acetylcholine and its analogues were potently active in aggregating pigment. Atropine or scopolamine interferred with the action of both nervous stimulation and acetylcholine. Physostigmine, on the other hand, augmented the cholinergic effects. The conclusion was that the transmission was cholinergic, being mediated by cholinoceptors of muscarinic type, as in the case ofParasilurus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagnara, J. T., Hadley, M. E.: Chromatophores and color change. Englewood Cliffs, N.J.: Prentice-Hall. 1973.

    Google Scholar 

  • Burn, J. H., Rand, M. J.: Sympathetic postganglionic mechanism. Nature184, 163–165 (1959).

    Google Scholar 

  • Burnstock, G., Costa, M.: Adrenergic neurons. London: Chapman and Hall. 1975.

    Google Scholar 

  • Dale, H. H., Feldberg, W.: The chemical transmission of secretory impulses to the sweat glands of the cat. J. Physiol.82, 121–128 (1934).

    Google Scholar 

  • Enami, M.: Mechanism of control of the chromatophore responses in teleosts and crustaceans (a review). Jap. J. Exp. Morphol. (Jikken Keitaigaku)7, 1–22 (1951).

    Google Scholar 

  • Fernando, M. M., Grove, D. J.: Melanophore aggregation in the plaice (Pleuronectes platessa L.)-I. Changes inin vivo sensitivity to sympathomimetic amines. Comp. Biochem. Physiol.48 A, 711–721 (1974).

    Google Scholar 

  • von Frisch, K.: Beiträge zur Physiologie der Pigmentzellen in der Fischhaut. Arch. Ges. Physiol.138, 319–387 (1911).

    Google Scholar 

  • Fujii, R.: Demonstration of the adrenergic nature of transmission at the junction between melanophore-concentrating nerve and melanophore in bony fish. J. Fac. Sci. Univ. Tokyo Sect. IV9, 171–196 (1961).

    Google Scholar 

  • Fujii, R.: Chromatophores and pigments. In: Fish physiology (Hoar, W. S., Randall, D. J., eds.), Vol.3, pp. 307–353. New York: Academic Press. 1969.

    Google Scholar 

  • Fujii, R., Jain, A. K., Miyashita, Y.: Note on the nervous control of melanophores of the loach,Misgurnus anguillicaudatus. J. Lib. Arts & Sci. Sapporo Med. Coll.21, 61–63 (1980).

    Google Scholar 

  • Fujii, R., Miyashita, Y.: Receptor mechanisms in fish chromatophores-I. Alpha nature of adrenoceptors mediating melanosome aggregation in guppy melanophores. Comp. Biochem. Physiol.51 C, 171–178 (1975).

    Google Scholar 

  • Fujii, R., Miyashita, Y.: Receptor mechanisms in fish chromatophores-III. Neurally controlled melanosome aggregation in a siluroid (Parasilurus asotus) is strangely mediated by cholinoceptors. Comp. Biochem. Physiol.55 C, 43–49 (1976).

    Google Scholar 

  • Fujii, R., Miyashita, Y.: Recording of chromatophore responses by means of an image analyzer system, J. Pre-Med. Course Sapporo Med. Coll.19, 129–140 (1978 a).

    Google Scholar 

  • Fujii, R., Miyashita, Y.: Receptor mechanisms in fish chromatophores-IV. Effects of melatonin and related substances on dermal and epidermal melanophores of the siluroid,Parasilurus asotus. Comp. Biochem. Physiol.59 C, 59–63 (1978 b).

    Google Scholar 

  • Fujii, R., Miyashita, Y.: Receptor mechanisms in fish chromatophores-V. MSH disperses melanosomes in both dermal and epidermal melanophores of a catfish (Parasilurus asotus). Comp. Biochem. Physiol.71 C, 1 to 6 (1982).

    Google Scholar 

  • Fujii, R., Novales, R. R.: Tetrodotoxin: effects on fish and frog melanophores. Science160, 1123–1124 (1968).

    Google Scholar 

  • Fujii, R., Novales, R. R.: Cellular aspects of the control of physiological color changes in fishes. Amer. Zoologist9, 453–463 (1969).

    Google Scholar 

  • Fujii, R., Novales, R. R.: Nervous control of melanosome movements in vertebrate melanophores. In: Pigmentation: its genesis and biologic control (Riley, V., ed.), pp. 315–326. New York: Appleton-Century-Crofts. 1972.

    Google Scholar 

  • Fujii, R., Taguchi, S.: Ultrastructure of nerve-melanophore relationships in the guppy,Lebistes reticulatus. Annotationes Zool. Japon.43, 123–131 (1970).

    Google Scholar 

  • Gray, E. G.: Control of the melanophores of the minnow [Phoxinus phoxinus (L.)]. J. Exp. Biol.33, 448–459 (1956).

    Google Scholar 

  • Healey, E. G., Ross, D. M.: The effects of drugs on the background colour responses of the minnowPhoxinus phoxinus L. Comp. Biochem. Physiol.19, 545–580 (1966).

    Google Scholar 

  • Iga, T., Matsuno, A.: Scale melanophores ofZacco temmincki; a preparation suitable for physiological or pharmacological studies on fish melanophores. Zool. Mag. (Dobutsugaku Zasshi)89, 227–234 (1980).

    Google Scholar 

  • Iwata, K. S., Fukuda, H.: Central control of color changes in fish. In: Responses of fish to environmental changes (Chavin, W., ed.), pp. 316 to 341. Springfield, Ill.: Ch. C Thomas. 1973.

    Google Scholar 

  • Iwata, K. S., Watanabe, M., Nagao, K.: The mode of action of pigment concentrating agents on the melanophores in an isolated fish scale. Biol. J. Okayama Univ.5, 195–206 (1959).

    Google Scholar 

  • Jain, A. K., Bhargava, H. N.: Studies on the colour-change mechanism in a fresh-water teleost,Nandus nandus (Ham.) I. Neural control. J. Neural Transm.44, 51–63 (1979).

    Google Scholar 

  • Le Douarin, N. M., Renaud, D., Teiltet, M. A., De Douarin, G. H.: Cholinergic differentiation of presumptive adrenergic neuroblasts in interspecific chimeras after heterotopic transplantations. Proc. Nat. Acad. Sci. U.S.A.72, 728–732 (1975).

    Google Scholar 

  • Parker, G. H.: Animal colour changes and their neurohumours. Cambridge: Cambridge Univ. Press. 1948.

    Google Scholar 

  • Pye, J. D.: Nervous control of chromatophores in teleost fishes. I. Electrical stimulation in the minnow [Phoxinus phoxinus (L.)]. J. Exp. Biol.41, 525–534 (1964).

    Google Scholar 

  • Reichardt, L. F., Patterson, P. H.: Neurotransmitter synthesis and uptake by isolated sympathetic neurones in microcultures. Nature270, 147–151 (1977).

    Google Scholar 

  • Schliwa, M.: Fine structure of nerve-melanophore contacts in the angelfish,Pterophyllum scalare. Cell Tiss. Res.171, 381–387 (1976).

    Google Scholar 

  • Scott, G. T.: Physiology and pharmacology of color change in the sand flounderScopthalmus aquosus. Limnol. Oceanogr.10, 230–246 (1965).

    Google Scholar 

  • Umrath, K.: Über den physiologischen und den morphologischen Farbwechsel des Bitterlings,Rhodeus amarus. Z. vergl. Physiol.40, 321–328 (1957).

    Google Scholar 

  • Uvnäs, B.: Sympathetic vasodilator outflow. Physiol. Rev.34, 608–618 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, R., Miyashita, Y. & Fujii, Y. Muscarinic cholinoceptors mediate neurally evoked pigment aggregation in glass catfish melanophores. J. Neural Transmission 54, 29–39 (1982). https://doi.org/10.1007/BF01249276

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01249276

Keywords

Navigation