Skip to main content
Log in

Differential kinetics of [123I]β-CIT binding to dopamine and serotonin transporters

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Iodine-123-labelled 3β-(4-iodophenyl)tropane-2β-carboxylic acid ([123I]β-CIT) labels both the dopamine transporter (DAT) and the serotonin transporter (5-HTT) and this ligand is able to clarify pathological changes in both dopaminergic and serotonergic systems. However, the differential kinetics of β-CIT binding to DAT and 5-HTT has not been clarified fully. In this study we examined time-activity curves of [123I]β-CIT in individual regions in the rat brain. Using cerebellum as the reference region,k 3 andk 4 values were estimated by a two-compartment kinetic analysis. In the striatum, the kinetics was slowest among all brain areas. In this area specific binding reached its peak 4 h after the injection. In the hypothalamus, specific binding reached its peak 1 h after the injection and its amount did not change until 4 h after the injection. In the occipital cortex, the binding and washout of the ligand were fastest among all brain regions. Estimatedk 3 values were 0.040±0.003 in the striatum, 0.019±0.002 in the hypothalamus and 0.082±0.011 in the occipital cortex (min−t, mean ±SD). Estimatedk 4 values were 0.0034±0.0005 in the striatum, 0.0071±0.0009 in the hypothalamus and 0.083±0.013 in the occipital cortex (min−1, mean ±SD). Therefore binding kinetics of [123I]β-CIT in the region rich in DAT is apparently different from that in the region rich in 5-HTT. These results will provide fundamental data to image both DAT and 5-HTT in one series of examinations with [123I]β-CIT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perry EK, Marshall EE Blessed G, Tomlinson BE, Perry RH. Decreased imipramine binding in the brains of patients with depressive illness.Br J Psychiatry 1983; 142: 188–192.

    Google Scholar 

  2. Crow TJ, Cross AJ, Cooper SJ, Deakin JFW, Ferrier IN, Johnson JA, Joseph MH, Owen F, Poulter M, Lofthouse R, Corsellis JAN, Chambers DR, Blessed G, Perry EK, Perry EH. Neurotransmitter receptors and monoamine metabolites in the patients with Alzheimer-type dementia and depression, and suicides.Neurophannacology 1984; 23: 1561–1569.

    Google Scholar 

  3. Komiskey HL, Miller DD, Lapidus JB, Patel PN. The isomers of cocaine and tropacocaine: effects of3H-cathecolamine uptake by rat brain synaptosomes.Life Sci 1977; 21:1117–1122.

    Google Scholar 

  4. Kilty JE, Lorang D, Amara SG. Cloning and expression of a cocaine-sensitive rat dopamine transporter.Science 1991: 254: 578–579.

    Google Scholar 

  5. Shimada S, Kitayama S, Lin CL, Patel A, Nanthakumar E, Gregor P, Kuhar M, Uhl G. Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 1991; 254: 576–578.

    Google Scholar 

  6. Blakely RD, Berson HE, Fremeau RJ, Caron MG, Peek MM, Prince HK, Bradley CC. Cloning and expression of a functional serotonin transporter from rat brain.Nature 1991; 354: 66–70.

    Google Scholar 

  7. Hoffman BJ, Mezey E, Brownstein MJ. Cloning of a serotonin transporter affected by antidepressants.Science 1991; 254: 579–580.

    Google Scholar 

  8. Pacholczyk T, Blakely RD, Amara SG. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter.Nature 1991; 350: 350–354.

    Google Scholar 

  9. Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, Macgregor RR, Hitzemann R, Logan J, Bendriem B, Gatley SJ, Christman D. Mapping cocaine binding sites in human and baboon brain in vivo.Synapse 1989; 4: 371–377.

    Google Scholar 

  10. Frost JJ, Rosier AJ, Reich SG, Smith JS, Ehlers MD, Snyder SH, Ravert HT, Dannals RF. Positron emission tomography imaging of the dopamine transporter with11C-WIN 35,428 reveals marked declines in mild Parkinson's disease.Ann Neurol 1993; 34: 423–431.

    Google Scholar 

  11. Innis RB, Seibyl JP, Scanley BE, Laruelle M, Abi-Dargham A. Wallace E, Baldwin RM, Zea PY, Zoghbi S, Wang S, Gao Y, Neumeyer JL, Charney DS, Hoffer PB, Marek KL. Single photon emission computed tomography imaging demonstrates loss of striatal dopamine transporters in Parkinson disease.Proc Natl Acad Sci USA 1993; 90: 11965–11969.

    Google Scholar 

  12. Kuikka JT, Bergstrom KA, Vanninen E, Laulumaa V, Hartikainen P, Lansimies E. Initial experience with single-photon emission tomography using iodine-123-labelled 2β-carbome-thoxy-3β-(4-iodophenyl)tropane in human brain.Eur J Nucl Med 1993; 20: 783–786.

    Google Scholar 

  13. Neumeyer JL, Wang S, Gao Y, Milius RA, Kula NS, Campbell A, Baldessarini RJ, Zea PY, Baldwin RM, Innis RB.N-Omega-fluoroalkyl analogs of (1R)-2β-carbomethoxy-3β-(4-iodophenyl)-tropane (β-CIT): radiotracers for positron emission tomography and single photon emission computed tomography imaging of dopamine transporters.J Med Chem 1994; 37: 1558–1561.

    Google Scholar 

  14. Baldwin RM, Zea-Ponce Y, Al-Tikriti MS, Zoghbi SS, Seibyl JP, Charney DS, Hoffer PB. Wang S, Milius RA, Neumeyer JL, Innis RB. Regional brain uptake and pharmacokinetics of [123I]N-ω)-fluoroalkyl-2β-carboxy-3β-(4-iodophenyl)nortropane esters in baboons.Nucl Med Biol 1995; 22: 211–219.

    Google Scholar 

  15. Kuikka JT, Akerman K, Bergstrom KA, Karhu J, Hiltunen J, Haukka J, Heikkinen J, Tiihonen J, Wang S, Neumeyer JL. Iodine-123 labelledN-(2-fluoroethyl)-2β-carbomethoxy-3β-(4-iodophenyl)nortropane for dopamine transporter imaging in the living human brain.Eur J Nucl Med 1995; 22: 682–686.

    Google Scholar 

  16. Brucke T, Kornhuber J, Angelberger P, Asenbaum S, Frassine H, Podreka I. SPECT imaging of dopamine and serotonin transporters with [123I]β-CIT. Binding kinetics in the human brain.J Neural Transm Gen Sect 1993; 94: 137–146.

    Google Scholar 

  17. Laruelle M, Baldwin RM, Malison RT, Zea PY, Zoghbi SS, Al-Tikriti MS, Sybirska EH, Zimmermann RC, Wisniewski G, Neumeyer JL. Milius RA, Wang S, Smith EO, Roth RH, Charney DS, Hoffer PB, Innis RB. SPECT imaging of dopamine and serotonin transporters with [123I]β-CIT: pharmacological characterization of brain uptake in nonhuman primates.Synapse 1993; 13: 295–309.

    Google Scholar 

  18. Kuikka JT, Tiihonen J, Bergstrom KA, Karhu J, Hartikainen P, Viinamaki H, Lansimies E, Lehtonen J, Hakola P. Imaging of serotonin and dopamine transporters in the living human brain.Eur J Nucl Med 1995; 22: 346–350.

    Google Scholar 

  19. Kuikka JT, Tiihonen J, Bergstrom KA, Karhu J, Viinamaki H, Lehtonen J, Hakola P, Lansimies E. Altered serotonin and dopamine transporter densities associated with impulse violent behaviour.J Nucl Med 1995; Suppl 36: 31 P.

  20. Marquardt DW. An algorithm for least square estimation of non-linear parameters.J Soc Indust Appl Math 1963; 11: 431–441.

    Google Scholar 

  21. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography.Ann Neurol 1984; 15: 217–227.

    Google Scholar 

  22. Boja JW Mitchell WM, Patel A, Kopajtic TA, Carroll FI, Lewin AH, Abraham P, Kuhar MJ. High-affinity binding of [125I]RTI-55 to dopamine and serotonin transporters in rat brain.Synapse 1992; 12: 27–36.

    Google Scholar 

  23. Little KY, Kirkman JA, Carroll FI, Breese GR, Duncan GE. [125I]RTI-55 binding to cocaine-sensitive dopaminergic and serotonergic uptake sites in the human brain.J Neurochem 1993; 61: 1996–2006.

    Google Scholar 

  24. Fujita M, Shimada S, Fukuchi K, Tohyama M, Nishimura T. Distribution of cocaine recognition sites in rat brain: in vitro and ex vivo autoradiography with [125I]RTI-55.J Chem Neuroanat 1994; 7: 13–23.

    Google Scholar 

  25. Staley JK, Basile M, Flynn DD, Mash DC. Visualizing dopamine and serotonin transporters in the human brain with the potent cocaine analogue [125I]RTI-55: in vitro binding and autoradiographic characterization.J Neurochem 1994; 62: 549–556.

    Google Scholar 

  26. Scheffel U, Dannals RF, Cline EJ, Ricaurte GA, Carroll FI, Abraham P, Lewin AH, Kuhar MJ. [123/125I]RTI-55, an in vivo label for the serotonin transporter.Synapse 1992, 11: 134–139.

    Google Scholar 

  27. Chen HT, Clark M, Goldman D. Quantitative autoradiography of3H-paroxetine binding sites in rat brain.J Pharmacol Toxicol Methods 1992; 27: 209–216.

    Google Scholar 

  28. Suhara T, Fukuda H, Inoue O, Itoh T, Suzuki K, Yamasaki T, Tateno Y. Age-related changes in human D1 dopamine receptors measured by positron emission tomography.Psychopharmacology 1991; 103: 41–45.

    Google Scholar 

  29. Wong DF, Gjedde A, Wagner HN Jr. Quantification of neuroreceptors in the living human brain. I. Irreversible binding of ligands.J Cereb Blood Flow Metab 1986; 6: 137–146.

    Google Scholar 

  30. Frost JJ, Douglass KH, Mayberg HS, Dannals RF, Links JM, Wilson AA, Ravert HT, Crozier WC, Wagner HN Jr. Multicompartmental analysis of [11C]-carfentanil binding to opiate receptors in humans measured by positron emission tomography.J Cereb Blood Flow Metab 1989; 9: 398–409.

    Google Scholar 

  31. Inoue O, Kobayashi K, Sakiyama Y, Suzuki T. The effect of benzodiazepines on the binding of [3H]SCH 23390 in vivo.Neuropharmacology 1992; 31: 115–121.

    Google Scholar 

  32. Kobayashi K, Inoue O. An increase in the in vivo binding of [3H]SCH 23390 induced by MK-801 in the mouse striatum.Neuropharmacology 1993; 32: 341–348.

    Google Scholar 

  33. Friedman E, Fung F, Gershon S. Antidepressant drugs and dopamine uptake in different brain regions.Eur J Pharmacol 1977; 42: 47–51.

    Google Scholar 

  34. Kinnier WJ, Tabor RD, Norrell LY. Neurochemical properties of AHR-9377: a novel inhibitor of norepinephrine reuptake.Biochem Pharmacol 1984; 33: 3001–3005.

    Google Scholar 

  35. Laruelle M, Wallace E, Seibyl JP, Baldwin RM, Zea PY, Zoghbi SS, Neumeyer JL, Charney DS, Hoffer PB, Innis RB. Graphical, kinetic, and equilibrium analyses of in vivo [123I]β-CIT binding to dopamine transporters in healthy human subjects.J Cereb Blood Flow Metab 1994; 14: 982–994.

    Google Scholar 

  36. Waelbroeck M, Tastenoy M, Camus J, Christophe J. Binding kinetics of quinuclidinyl benzilate and methyl-quinuclidinyl benzilate enantiomers at neuronal (M1), cardiac (M2), and pancreatic (M3) muscarinic receptors.Mol Pharmacol 1991; 40: 413–420.

    Google Scholar 

  37. Flynn DD, Mash DC. Distinct kinetic binding properties ofN-[3H]-methylscopolamine afford differential labelling and localization of M1, M2, and M3 muscarinic receptor subtypes in primate brain.Synapse 1993; 14: 283–296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, M., Takatoku, K., Matoba, Y. et al. Differential kinetics of [123I]β-CIT binding to dopamine and serotonin transporters. Eur J Nucl Med 23, 431–436 (1996). https://doi.org/10.1007/BF01247372

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01247372

Key words

Navigation