Skip to main content
Log in

Statistical topography. I. Fractal dimension of coastlines and number-area rule for Islands

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

Statistical topography involves the study of the geometrical properties of the iso-sets (contour lines or surfaces) of a random potential ψ(r). Previous work [1,2] has addressed coastlines on a random relief ψ(x, y) that possess a single characteristic spatial scale λ with topography belonging to the universality class of the random percolation problem. In the present paper this previous analytical approach is extended to the case of a multiscale random function with a power spectrum of scales, ψλ ∝ λH, in a wide range of wavelengths, λ0 < λ < λ m . It is found that the pattern of the coastline differs significantly from that of a monoscale landscape provided that −3/4 <H < 1, with the case −3/4 <H < 0 corresponding to the long-range correlated percolation and 0 <H < 1 to the fractional Brownian relief. The expression for the fractal dimension of an individual coastline is derived,D h = (10 − 3H)/7, the maximum value of whichD h = 7/4, corresponds to the monoscale relief. The distribution functionF(a) of level lines over their sizea is calculated:F(a) ∝a −4(1-H)/7, for λ0a ≪ λ m . A comparison of the theoretical results with geographical data is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Isichenko, J. Kalda, E. B. Tatarinova, O. V. Tel'kovskaya, and V. V. Yankov, “Diffusion in a medium with vortex flow,” Zh. Eksp. Teor. Fiz.96, 913 (1989) [Sov. Phys. JETP69, 517 (1989)].

    Google Scholar 

  2. A. V. Gruzinov, M. B. Isichenko, and J. Kalda, “Two-dimensional turbulent diffusion,” Zh. Eksp. Teor. Fiz.97, 476 (1990) [Sov. Phys. JETP70, 263 (1990)].

    Google Scholar 

  3. B. B. Mandelbrot, “How long is the coast of Britain? Statistical self-similarity and fractional dimension,” Science156, 636 (1967).

    Google Scholar 

  4. B. B. Mandelbrot, “Stochastic models for the Earth's relief, the shape and fractal dimensions of the coastlines, and the number-area rule for islands,” Proc. Natnl. Acad. Sci. (USA)72, 3825 (1975).

    Google Scholar 

  5. B. B. Mandelbrot,The Fractal Geometry of Nature (W. H. Freeman, San Francisco, 1983).

    Google Scholar 

  6. Special Issue: Essays in Honor of Benoit B. Mandelbrot, Physica D38 (1989).

  7. R. Zallen and H. Scher, “Percolation on a continuum and the localization-delocalization transition in amorphous semiconductors,” Phys. Rev.B4, 4471 (1971).

    Google Scholar 

  8. J. M. Ziman,Models of Disorder (Cambridge University Press, New York, 1979).

    Google Scholar 

  9. S. A. Trugman, “Percolation, localization, and quantum Hall effect,” Phys. Rev.B27, 7539 (1983).

    Google Scholar 

  10. A. S. Kingsep, K. V. Chukbar, and V. V. Yankov, “Electron magnetohydrodynamics,” inReviews of Plasma Physics, B. B. Kadomtsev, ed. (Consultants Bureau, New York, 1990), vol. 16, p. 243.

    Google Scholar 

  11. M. B. Isichenko and J. Kalda, “Anomalous resistance of randomly inhomogeneous Hall media,” Zh. Eksp. Teor. Fiz.99, 224 (1991).

    Google Scholar 

  12. M. S. Longuet-Higgins, “Reflection and refraction at a random moving surface,” J. Opt. Soc. Am.50, 838 (1960).

    Google Scholar 

  13. D. Stauffer,“Scaling theory of percolation clusters,” Phys. Rep.54, 2 (1979).

    Google Scholar 

  14. S. Havlin and D. Ben-Avraham, “Diffusion in disordered media,” Adv. Phys.36, 695 (1987).

    Google Scholar 

  15. B. I. Shklovskii and A. L. Efros,Electronic Properties of Doped Semiconductors (Springer-Verlag, New York, 1984).

    Google Scholar 

  16. A. Weinrib, “Percolation threshold of a two-dimensional continuum system,” Phys. Rev.B26, 1352 (1982).

    Google Scholar 

  17. P. Pfeuty and G. Toulouse,Introduction to the Renormalization Group and to Critical Phenomena (Wiley, New York, 1977).

    Google Scholar 

  18. Ya. B. Zeldovich, “Percolation properties of a random two-dimensional stationary magnetic field,” Pis'ma v Zh. Eksp. Teor. Fiz.38, 51 (1983) [JETP Lett.38, 57 (1983)].

    Google Scholar 

  19. M. B. Isichenko and J. Kalda, “Statistical topography. II. Two-dimensional transport of a passive scalar,” J. Nonlinear Sci.1(4), (1991), to appear.

  20. M. P. M. den Nijs, “A relation between the temperature exponents of the eight-vertex and 9-state Potts model,” J. Phys.A12, 1857 (1979).

    Google Scholar 

  21. H. Saleur and B. Duplantier, “Exact determination of the percolation hull exponent in two dimensions,” Phys. Rev. Lett.58, 2325 (1987).

    Google Scholar 

  22. B. Sapoval, M. Rosso, and J. F. Gouyet, “The fractal nature of a diffusion front and the relation to percolation,” J. Physique Lett.51, 2048 (1985).

    Google Scholar 

  23. A. Weinrib, “Long-range correlated percolation,” Phys. Rev.B29, 387 (1984).

    Google Scholar 

  24. I. M. Sokolov, “Dimensionalities and other geometric critical exponents in percolation theory,” Usp. Fiz. Nauk150, 221 (1986) [Sov. Phys. Usp.29, 924 (1986)].

    Google Scholar 

  25. The Map of Estonia 1:300 000 (Teede Ministeerium, Tallinn, 1931).

  26. Noukogude Eesti [Soviet Estonia] (Valgus, Tallinn, 1978).

  27. V. E. Zakharov, “Kolmogorov spectra of weak turbulence,” inBasic Plasma Physics, A. A. Galeev and R. N. Sudan, eds. (North-Holland, New York, 1984), Vol. II, p. 3.

    Google Scholar 

  28. The Quantum Hall Effect, R. E. Prange and S. M. Girvin, eds. (Springer-Verlag, New York, 1990).

    Google Scholar 

  29. A. Weinrib and B. I. Halperin, “Critical phenomena in systems with long-range correlated quenched disorder,” Phys. Rev.B27, 413 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by E. Kuznetsov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isichenko, M.B., Kalda, J. Statistical topography. I. Fractal dimension of coastlines and number-area rule for Islands. J Nonlinear Sci 1, 255–277 (1991). https://doi.org/10.1007/BF01238814

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01238814

Key words

Navigation