Skip to main content
Log in

Caffeine enhanced measurement of mutagenesis by low levels of γ-irradiation in human lymphocytes

  • Published:
Somatic Cell and Molecular Genetics

Abstract

The well-known action of caffeine in synergizing mutagenesis (including chromosome aberrations) of agents like ionizing radiation by inhibition of cellular repair processes has been incorporated into a rapid procedure for detection of mutagenicity with high sensitivity. Effects of 5–10 rads of γ-irradiation, which approximate the human lifetime dose accumulation from background radiation, can be detected in a two-day procedure using an immortalized human WBC culture. Chromosomally visible lesions are scored on cells incubated for 2 h after irradiation in the presence and absence of 1.0 mg/ml of caffeine. An eightfold amplification of scorable lesions is achieved over the action of radiation alone. This approach provides a closer approximation to absolute mutagenicity unmitigated by repair processes, which can vary in different situations. It is proposed that mutagenesis testing of this kind, using caffeine or other repair-inhibitory agents, be employed to identify mutagens in their effective concentrations to which human populations may be exposed; to detect agents such as caffeine that may synergize mutagenic actions and pose epidemiologic threats; and to discover effective anti-mutagens. Information derived from the use of such procedures may help prevent cancer and newly acquired genetic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Bishop, M.J. (1987).Science 235305–311.

    PubMed  Google Scholar 

  2. Rowley, J.D. (1990).Cancer Res. 503816–3825.

    PubMed  Google Scholar 

  3. Croce, C.M. (1991).Cancer Res. (Suppl 515105–5108.

    Google Scholar 

  4. Sager, R. (1989).Science 2461406–1412.

    PubMed  Google Scholar 

  5. Li, A.P., and Loretz, L.J. (1991). InGenetic Toxicology (eds.) Li, A.P., and Heflich, R.H. (CRC Press, Boca Raton), pp. 119–141.

    Google Scholar 

  6. Cellular Systems for Toxicity Testing, Vol. 407. (1983). (New York Academy of Sciences, New York).

  7. Environmental Health Criteria 51: Guide and Short Term Tests for Detecting Mutagenic and Carcinogenic Chemicals. (1985). (World Health Organization, Geneva). pp. 1–208.

  8. Banbury Report 28. Mammalian Cell Mutagenesis. (1987). (Cold Spring Harbor Laboratory, New York).

  9. Ames, G.N. (1971). InChemical Mutagens: Principles and Methods for Detection, Vol. 1 (ed.) Hollander, A. (Plenum Press, New York), pp. 267–288.

    Google Scholar 

  10. Waldren, C.A. (1983). InChemical Mutagens, Vol. 8 (ed) de Serres, F. (Plenum Press, New York).

    Google Scholar 

  11. Preston, R.J. (1984). InSingle-Cell Mutation Monitoring Systems: Methodologies and Applications (eds.) Ansari, A.A., and deSerres, F.J. (Plenum, New York).

    Google Scholar 

  12. Puck, T.T., and Waldren, C.A. (1987).Somat. Cell Mol. Genet. 13405–409.

    PubMed  Google Scholar 

  13. Waldren, C.A., Jones, C., and Puck, T.T. (1987).Somat. Cell Mol. Genet. 13411–414.

    PubMed  Google Scholar 

  14. Puck, T.T. (1985).Lett. Math. Phys. 10225–230.

    Google Scholar 

  15. Kihlman, B.A. (1977).Caffeine and Chromosomes. (Elsevier, Amsterdam).

    Google Scholar 

  16. Thompson, L.H., and Hoy, C.A. (1986). InChemical Mutagens: Principles and Methods for Their Detection, Vol. 10 (ed.) de Serres, F.J. (Plenum Press, New York), pp. 285–325.

    Google Scholar 

  17. Natarjan, A.T., Obe, G., and Dulout, F.N. (1980).Hum. Genet. 54183–189.

    PubMed  Google Scholar 

  18. Pincheira, J., and Lopez-Saez, J.F. (1991).Mutat. Res. 25171–77.

    PubMed  Google Scholar 

  19. Bender, M.A. (1957).Science 126974.

    PubMed  Google Scholar 

  20. Puck, T.T. (1958).Proc. Natl. Acad. Sci. U.S.A. 44772–780.

    Google Scholar 

  21. Kihlman, B.A., and Andersson, H.C. (1985).Mutat. Res. 150313–325.

    PubMed  Google Scholar 

  22. Jelmert, O., Hanstein, I.L., and Langard, S. (1992).Mutat. Res. 271(3):289–298.

    PubMed  Google Scholar 

  23. Pellicia, F., and Rocchi, A. (1992).Mutat. Res. 28243–48.

    PubMed  Google Scholar 

  24. Sakamoto-Hoto, E.T., and Takahashi, C.A. (1991).Mutat. Res. 248(1):195–202.

    PubMed  Google Scholar 

  25. Waldren, C.A. (1983). InChemical Mutagens: Principles and Methods for Their Detection, Vol 8, (ed.) de Serres, F.J. (Plenum, New York), pp. 235–260.

    Google Scholar 

  26. Timson, J. (1977).Mutat. Res. 471–52.

    PubMed  Google Scholar 

  27. Hansson, K., Palitti, F., Kihlman, B.A., and Karlsson, M.B. (1982).Hereditas 9751–58.

    PubMed  Google Scholar 

  28. Kihlman, B.A. (1977).Caffeine and Chromosomes, (Elsevier, Amsterdam).

    Google Scholar 

  29. Kihlman, B.A., and Andersson, H.C. (1986). InGenetic Toxicology of Environmental Chemicals, Part A: Basic Principles and Mechanisms of Action. (eds.) Ramel, C., Lambert, B., and Magnusson, J. (Alan R. Liss, New York), pp. 395–402.

    Google Scholar 

  30. Natarajan, A.T., van Zeeland, G., Palitti, A.A., Meijers, F., and Verdegaal-Immerzeel, E.A.M. (1980).Hum. Genet. 54183–189.

    PubMed  Google Scholar 

  31. Lialiaris, T., Pantazaki, A., Sevridis, E., and Mourelatos, D. (1992).Mutat. Res. 265(2):155–163.

    PubMed  Google Scholar 

  32. Blagoeva, P.M., Ralansky, R.M., and Mircheva, R.J. (1991).Mutat. Res. 246(1):123–127.

    PubMed  Google Scholar 

  33. Waldren, C.A., Uevo, A., Vannais, D., Bedford, J.S., and Hei, T. (1992). InLow Dose Irradiation and Biological Defense Mechanisms, (eds.) Sugahara, T., Sagan, L.A., and Aoyama, T. (Elsevier, Amsterdam), pp. 339–342.

    Google Scholar 

  34. Walters, R.A., Gurley, L.R., and Tobey, R.A. (1974).Biophys. J. 1499–118.

    PubMed  Google Scholar 

  35. Tolmach, R.J. (1980).Radiat. Res. 123119–137.

    Google Scholar 

  36. Timson, J. (1987).Mutat. Res. 471–52.

    Google Scholar 

  37. Waldren, C.A., and Rasko, I. (1978).Radiat. Res. 7395–110.

    PubMed  Google Scholar 

  38. Puck, T.T., and Marcus, P.I. (1956).J. Exp. Med. 103653–666.

    PubMed  Google Scholar 

  39. Waldren, C.A., Correll, L., Soignier, M.A., and Puck, T.T. (1986).Proc. Natl. Acad. Sci. U.S.A. 834839–4843.

    PubMed  Google Scholar 

  40. Waldren, C.A., and Puck, T.T. (1987).Somat. Cell Mol. Genet. 13411–414.

    PubMed  Google Scholar 

  41. Puck, T.T., and Waldren, C.A. (1987).Somat. Cell Mol. Genet. 13405–409.

    PubMed  Google Scholar 

  42. Evans, H.J. (1983).Ann. N.Y. Acad. Sci. 407131–141.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puck, T.T., Morse, H., Johnson, R. et al. Caffeine enhanced measurement of mutagenesis by low levels of γ-irradiation in human lymphocytes. Somat Cell Mol Genet 19, 423–429 (1993). https://doi.org/10.1007/BF01233247

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233247

Keywords

Navigation