Skip to main content
Log in

Integrable quantum systems and classical Lie algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We have obtained six new infinite series of trigonometric solutions to triangle equations (quantumR-matrices) associated with the nonexceptional simple Lie algebras:sl(N),sp(N),o(N). TheR-matrices are given in two equivalent representations: in an additive one (as a sum of poles with matrix coefficients) and in a multiplicative one (as a ratio of entire matrix functions). TheseR-matrices provide an exact integrability of anisotropic generalizations ofsl(N),sp(N),o(N) invariant one-dimensional lattice magnetics and two-dimensional periodic Toda lattices associated with the above algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karowski, M., Thun, H., Truong, T., Weisz, P.: On the uniqueness of purely elasticS-matrix in (1 + 1) dimension. Phys. Lett.B 67, 321–323 (1967);

    Google Scholar 

  2. Zamolodchikov, A.B.: Exact two-particleS-matrix of quantum solitons in sine-Gordon model. Pis'ma v ZhETF25, 499–502 (1977)

    Google Scholar 

  3. Zamolodchikov, A.B., Zamolodchikov, A.B.: FactorizedS-matrix in two dimension and exact solution of some relativistic field theory models. Ann. Phys.120, 253–291 (1979)

    Google Scholar 

  4. Baxter, R.J.: Partition function of the eight-vertex lattice model. Ann. Phys.70, 193–228 (1972)

    Google Scholar 

  5. Baxter, R.J.: Exactly solved models in statistical mechanics. London: Academic Press 1982

    Google Scholar 

  6. Yang, S.N.:S-matrix for the one-dimensionalN-body problem with repulsive or attractive δ-function interaction. Phys. Rev.168, 1920–1923 (1968)

    Google Scholar 

  7. Belavin, A.A.: Exact solution of the two-dimensional model with asymptotic freedom. Phys. Lett.B 87, 117–121 (1979)

    Google Scholar 

  8. Reshetikhin, N.Yu.:O(N) invariant quantum field theoretical models: Exact solution. Nucl. Phys.B 251 [FS13], 565–580 (1985)

    Google Scholar 

  9. Sklyanin, E.K., Takhtadjan, L.A., Faddeev, L.D.: Quantum inverse problem method I. Teor. Mat. Fiz.40, 194–220 (1979)

    Google Scholar 

  10. Faddeev, L.D.: Quantum completely integrable models in field theory. Sov. Sci. Rev.C 1, 107–155 (1980)

    Google Scholar 

  11. Drinfeld, V.G.: Hopf algebras and quantum triangle equations. Dokl. Akad. Nauk SSSR.283, 1060–1064 (1985)

    Google Scholar 

  12. Sklyanin, E.K.: Quantum variant of the inverse scattering method. Zap. Nauchn. Semin. LOMI.95, 55–128 (1980)

    Google Scholar 

  13. Perk, J.H., Schultz, C.L.: Diagonalization of the transfer matrix of a nonintersecting string model. Physica122A, 50–70 (1983)

    Google Scholar 

  14. Zamolodchikov, A.B., Zamolodchikov, Al.B.: Relativistic factorizedS-matrix in two-dimensions havingO(N) isotopic symmetry. Nucl. Phys.B 133, 525–535 (1978)

    Google Scholar 

  15. Berg, B., Karowski, M., Kurak, V., Weisz, P.: Factorized symmetricS-matrices in two dimensions. Nucl. Phys. B134, 125–132 (1977)

    Google Scholar 

  16. Zamolodchikov, A.B., Fateev, V.A.: Model factorizedS-matrix and an integrable Heisenberg chain with spin 1. Yad. Fiz.32, 581–590 (1980) [English transl.: Sov. J. Nucl. Phys.32, 298 (1980)]

    Google Scholar 

  17. Fateev, V.A.: FactorizedS matrix for particles with different parities and integrable 21-vertex statistical model. Yad. Fiz.33, 1419–1430 (1981) [English transl.: Sov. J. Nucl. Phys.33, 761 (1980)]

    Google Scholar 

  18. Izergin, A.G., Korepin, V.E.: The inverse scattering method approach to the Shabat-Mikhailov model. Commun. Math. Phys.79, 303–316 (1981)

    Google Scholar 

  19. Cherednik, I.V.: On method of constructing factorizedS matrices in elementary functions. Teor. Mat. Fiz.43, 117–119 (1980) [English transl.: Theor. Math. Phys.43, 356 (1980)]

    Google Scholar 

  20. Belavin, A.A.: Discrete groups and the integrability of quantum systems. Funkts. Anal. Prilozh.14, 18–26 (1980);

    Google Scholar 

  21. Belavin, A.A.: Dynamical symmetry of integrable quantum systems. Nucl. Phys. B180 [FS2], 189–200 (1981)

    Google Scholar 

  22. Cherednik, I.V.: On properties of factorizedS-matrices in elliptic functions. Yad. Fiz.32, 549–557 (1982)

    Google Scholar 

  23. Bazhanov, V.V., Stroganov, Yu.G.: A new class of factorizedS-matrices and triangle equations. Phys. Lett.B 105, 278–280 (1981)

    Google Scholar 

  24. Bazhanov, V.V., Stroganov, Yu.G.: Trigonometric andS n symmetric solution of triangle equations with variable on the faces. Nucl. Phys.B 205 [FS5], 505–526 (1982)

    Google Scholar 

  25. Kulish, P.P., Sklyanin, E.K.: Solutions of the Yang-Baxter equations. Zap. Nauchn. Semin. LOMI.95, 129–160 (1982) [English transl.: J. Soviet Math.19, 1596 (1982)]

    Google Scholar 

  26. Belavin, A.A., Drinfeld, V.G.: Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funkts. Anal. Prilozh.16(3), 1–39 (1982) [English transl.: Funct. Anal. Appl.16, 159 (1982)];

    Google Scholar 

  27. Belavin, A.A., Drinfeld, V.G.: Triangle equations and simple Lie algebras. Sov. Sci. Rev.4C, 93–165 (1984)

    Google Scholar 

  28. Bazhanov, V.V.: Trigonometric solutions of the triangle equations and classical Lie algebras. Phys. Lett.159 B, 321–324 (1985)

    Google Scholar 

  29. Bazhanov, V.V.: Exactly soluble models connected with simple Lie algebras. In: Special topics in gauge theories. Proc. XIX Int. Simp. Arenshoop, November, 1985, pp. 181–199

  30. Bazhanov, V.V.: QuantumR-matrices and matrix generalizations of trigonometric functions. Preprint IHEP 86–39, Serpukhov: 1986 (in Russian) (submitted to Teor. Mat. Fiz.)

  31. Leites, D.A., Serganova, V.V.: On solutions of the classical Yang-Baxter equations for simple Lie superalgebras. Teor. Mat. Fiz.58, 26–37 (1984)

    Google Scholar 

  32. Bazhanov, V.V., Shadrikov, A.G.: Quantum triangle equations and Lie superalgebras. Preprint IHEP 86-43. Serpukhov: 1986 (submitted to Teor. Mat. Fiz.)

  33. Jimbo, M.: QuantumR-matrix for the generalized Toda system. Commun. Math. Phys.102, 537–547 (1986)

    Google Scholar 

  34. Bazhanov, V.V., Stroganov, Yu.G.: On connection between the solutions of the quantum and classical triangle equations. In: Proc. 6th. Int. Sem. on high energy physics and field theory. Protvino1, 51–53 (1983)

    Google Scholar 

  35. Takhtadjan, L.A.: Solutions of triangle equations withZ n ×Z n symmetry and matrix analogs of Weierstrass ζ- and σ-functions. Zap. Nauchn. Semin. LOMI.133, 258–276 (1984)

    Google Scholar 

  36. Reshetikhin, N.Yu., Faddeev, L.D.: Hamiltonian structures for integrable models of field theory. Teor. Mat. Fiz.56, 311–321 (1983) [English transl.: Theor. Math. Phys.56, 847 (1984)]

    Google Scholar 

  37. Kulish, P.P.: Quantum difference nonlinear Schrödinger equations. Lett. Math. Phys.5, 191–197 (1981)

    Google Scholar 

  38. Olive, D.I., Turok, N.: Algebraic structure of Toda systems. Nucl. Phys. B220 [FS8], 491 (1983)

    Google Scholar 

  39. Leznov, A.N., Saveliev, M.V., Smirnov, V.G.: Group representation theory and integrable nonlinear systems. Teor. Mat. Fiz.48, 3–12 (1981);

    Google Scholar 

  40. Bogoyavelensky, O.I.: On perturbations of the periodic Toda latice. Commun. Math. Phys.51, 201–209 (1976)

    Google Scholar 

  41. Mikhailov, A.V., Olshanetsky, M.A., Perelomov, A.M.: Two-dimensional generalized Toda lattice. Commun. Math. Phys.79, 473–488 (1981)

    Google Scholar 

  42. Jimbo, M., Miwa, T.: Classification of solutions to the star-triangle relations for a class of 3-and 4-state IRF models. Nucl. Phys. B257 [FS14], 1–18 (1985)

    Google Scholar 

  43. Jimbo, M.: QuantumR matrix related to the generalized Toda system: an algebraic approach. Preprint RIMS-521, Kyoto: 1985

  44. Babelon, O., de Vega, H.J., Viallet, C.M.: Solutions of the factorization equations from Toda field Theory. Nucl. Phys. B190, 542 (1981)

    Google Scholar 

  45. Izergin, A.G., Korepin, V.E.: Lattice version of quantum field theory models in two dimensions. Nucl. Phys. B205 [FS5], 401–413 (1982);

    Google Scholar 

  46. Izergin, A.G., Korepin, V.E.: The most generalL-operator for theR-matrix of the XXX model. Lett. Math. Phys.8, 259–265 (1984)

    Google Scholar 

  47. Babelon, O.: Representation of the Yang-Baxter algebra associated to Toda field theory. Nucl. Phys. B230 [FS10], 241–249 (1983)

    Google Scholar 

  48. Whittaker, E.T., Watson, G.N.: A course of modern analysis. Cambridge: Cambridge University Press 1927

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Ya. G. Sinai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazhanov, V.V. Integrable quantum systems and classical Lie algebras. Commun.Math. Phys. 113, 471–503 (1987). https://doi.org/10.1007/BF01221256

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01221256

Keywords

Navigation