Skip to main content
Log in

One-electron relativistic molecules with Coulomb interaction

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

As an approximation to a relativistic one-electron molecule, we study the operator\(H = ( - \Delta + m^2 )^{1/2} - e^2 \sum\limits_{j = 1}^K {Z_j } |x - R_j |^{ - 1}\) withZ j ≧0,e −2=137.04.H is bounded below if and only ife 2 Z j ≦2/π allj. Assuming this condition, the system is unstable whene 2Z j >2/π in the sense thatE 0=inf spec(H)→−∞ as the R j →0, allj. We prove that the nuclear Coulomb repulsion more than restores stability; namely\(E_0 + 0.069e^2 \sum\limits_{i< j} {Z_i Z_j } |R_i - R_j |^{ - 1} \geqq 0\). We also show thatE 0 is an increasing function of the internuclear distances |R i R j |.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dyson, F., Lenard, A.: Stability of matter. I. J. Math. Phys.8, 423–434 (1967)

    Google Scholar 

  2. Lenard, A., Dyson, F.: Stability of matter. II. J. Math. Phys.9, 698–711 (1968)

    Google Scholar 

  3. Lieb, E., Thirring, W.: A bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett.35, 687–689 (1975); Errata: Phys. Rev. Lett.35, 1116 (1975). See also Lieb, E.: The stability of matter. Rev. Mod. Phys.48, 553–569 (1976)

    Google Scholar 

  4. Dyson, F.: Ground-state energy of a finite system of charged particles. J. Math. Phys.8, 1538–1545 (1967)

    Google Scholar 

  5. Lieb, E.: TheN 5/3 law for bosons. Phys. Lett.A70, 71–73 (1979)

    Google Scholar 

  6. Weder, R.: Spectral analysis of pseudodifferential operators. J. Funct. Anal.20, 319–337 (1975)

    Google Scholar 

  7. Herbst, I.: Spectral theory of the operator (p 2+m 2)1/2Ze 2/r. Commun. Math. Phys.53, 285–294 (1977); Errata: Commun. Math. Phys.55, 316 (1977)

    Google Scholar 

  8. Kato, T.: Perturbation theory for linear operators. Berlin, New York: Springer 1966 (2nd edn. 1976)

    Google Scholar 

  9. Lieb, E., Simon, B.: Monotonicity of the electronic contribution to the Born-Oppenheimer energy. J. Phys.B11, L537–542 (1978)

    Google Scholar 

  10. Lieb, E.: Monotonicity of the molecular electronic energy in the nuclear coordinates. J. Phys.B15, L63-L66 (1982)

    Google Scholar 

  11. Daubechies, I.: An uncertainty principle for fermions with generalized kinetic energy. Commun. Math. Phys. (1983)

  12. Lieb, E., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math.23, 22–116 (1977)

    Google Scholar 

  13. Kovalenko, V., Perelmuter, M., Semenov, Ya.: Schrödinger operators withL 1/2 w (ℝl) potentials. J. Math. Phys.22, 1033–1044 (1981)

    Google Scholar 

  14. Brascamp, H., Lieb, E., Luttinger, M.: A general rearrangement inequality for multiple integrals. J. Funct. Anal.17, 227–237 (1974)

    Google Scholar 

  15. Lieb, E.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities (submitted)

  16. Reed, M., Simon, B.: Methods of modern mathematical physics Vol. IV: Analysis of operators. New York: Academic Press 1978

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Fröhlich

Work partially supported by U.S. National Science Foundation grant PHY-8116101-A01

On leave from Vrije Universiteit Brussel, Belgium, and from Interuniversitair Instituut voor Kernwetenschappen, Belgium

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daubechies, I., Lieb, E.H. One-electron relativistic molecules with Coulomb interaction. Commun.Math. Phys. 90, 497–510 (1983). https://doi.org/10.1007/BF01216181

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01216181

Keywords

Navigation