Skip to main content
Log in

Increased catabolism of muscle proteins as a manifestation of radiation myopathy

  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Summary

Exposure of the hindquarter of the rat to 1000 rad of gamma-radiation caused a significant increase in the release of glutamine and alanine into the perfusion fluid at 4 h post-irradiation. The extent of the release of glutamine exceeded that of alanine. Furthermore, the exposure to gamma-radiation brought about a significant lowering of the intra-/extracellular concentration gradient with respect to glutamine and alanine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpert NL (1976) Model 23 AM glucose analyzer. Lab World 27:8–13

    Google Scholar 

  • Altman KI, Gerber GB (1983) The effects of ionizing radiation on connective tissue. Adv Radiat Biol 10:237–304

    Google Scholar 

  • Altman KI, Gerber GB, Hempelmann LH (1959) Radiation-induced tissue breakdown and its relation to protein catabolism. Int J Radiat Biol (Suppl) 26–32

    Google Scholar 

  • Bergmeyer HU, Bernt E, Schmidt F, Stork H (1974) D-Glucose: Bestimmung mit Hexokinase and Glucose-6-phosphat-Dehydrogenase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, Vol II, 3rd edn, pp 1241–1246

    Google Scholar 

  • Bergström RM, Salmi A (1962) Radiation-induced damage in the ultrastructure of striated muscle. Exp Cell Res 26:226–228

    Google Scholar 

  • Bernt E, Bergmeyer HU (1974) L-Glutamat: UV-Test mit Glutamat-Dehydrogenase and NAD. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, Vol II, 3rd Edn, pp 1749–1753

    Google Scholar 

  • Clerbaux T, Gerets G, Frans A (1973) Oxygen content determination using a new analyzer. J Lab Clin Med 82:342–348

    Google Scholar 

  • Cohen PP (1957) Suspending media for animal tissues. In: Umbreit WW, Burris RH, Stauffer JF (eds) Manometric Techniques, pp 147–150. Burgess, Minneapolis

  • Darden EB Jr (1960) Changes in membrane potential, K content, and fiber structure in irradiated frog sartorius muscle. Am J Physiol 198:709–714

    Google Scholar 

  • Eggstein M, Kuhlmann E (1974) Triglyceride and Glycerin. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, Vol II, 3rd Edn, pp 1871–1878

    Google Scholar 

  • Fedder L, Hellner H (1982) Die Veränderungen der quergestreiften Muskulatur nach Röntgenbestrahlung im Tierexperiment. Strahlentherapie 30:682–706

    Google Scholar 

  • Gerber G, Gerber G, Altman KI, Hempelman LH (1959) Radiation-induced tissue breakdown. IV. The source of degraded amino acids in irradiated rats. Int J Radiat Biol 12:277–287

    Google Scholar 

  • Gerber GB, Gerber G, Gertler P, Altman KI, Hempelmann LH (1961 a) Dose dependency of radiation-induced creatine excretion in rat urine. Radiat Res 15:307–313

    Google Scholar 

  • Gerber GB, Gerber G, Gertler P, Altman KI, Hempelmann LH (1961 b) Creatine metabolism after X-irradiation of rats. Int J Radiat Biol 3:17–22

    Google Scholar 

  • Gerber GB, Gerber G, Altman KI (1962) The mechanism of radiation-induced creatinuria. Proc Soc Exp Biol Med 110:797–799

    Google Scholar 

  • Gerstner BB, Lewis RB, Ritchey EO (1954) Early effects of high intensity X-irradiation on skeletal muscle. J Gen Physiol 37:445–459

    Google Scholar 

  • Gutmann I, Wahlefeld AW (1974) L (+) Lactat: Bestimmung mit Lactat-Dehydrogenase und NAD. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, Vol II, 3rd Edn, pp 1510–1514

    Google Scholar 

  • Haberland GL, Schreier K, Bruns F, Altman KI, Hempelmann LH (1955) Creatine-creatinine metabolism in radiation myopathy. Nature 175:1039–1040

    Google Scholar 

  • Haberland GL, Schreier K, Altman KI, Hempelmann LH (1957) Cellular destruction and protein breakdown induced by exposure to x-rays. II. Further studies using the concept of the dynamic glycine pool. Biochim Biophys Acta 25:237–241

    Google Scholar 

  • Jaworek D, Gruber W, Bergmeyer HU (1974) Adenosin-5′-diphosphat and Adenosin-5′-monophosphat. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, Vol II, 3rd Edn, pp 2178–2181

    Google Scholar 

  • Khan MY (1974) Radiation-induced changes in skeletal muscle. J Neuropathol Exp Neurol 33:42–57

    Google Scholar 

  • Klewitz F (1923) Kurze Mitteilung über einige Stoffwechseluntersuchungen bei Röntgenbestrahlten. (Kreatinin-Kreatin-Aminosäuren- und Stickstoffausscheidung.) Strahlentherapie 14:101–105

    Google Scholar 

  • Kurohara SS, Rubin P, Hempelmann LH (1961) Creatinuria and fatigue in patients undergoing radiation therapy. Radiology 77:804–812

    Google Scholar 

  • Lamprecht W, Stein P, Heinz F, Weisser H (1974) Creatinphosphat: Bestimmung mit CreatinKinase, Hexokinase and Glucose-6-phosphat-Dehydrogenase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, Vol II, 3rd edn, pp 1825–1829

    Google Scholar 

  • Lauenstein K, Haberland GL, Hempelmann LH, Altman KI (1957) Cellular destruction and protein breakdown induced by exposure to x-rays. III. The use of hippuric acids for the simultaneous estimate of 2 “free” amino acid pools. Biochim Biophys Acta 26:421–424

    Google Scholar 

  • Lewis RB (1954) Changes in striated muscle following single intense doses of X-rays. Lab Invest 3:48–55

    Google Scholar 

  • Lund P (1974) L-Glutamin: Bestimmung mit Glutaminase and Glutamat-Dehydrogenase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, Vol II, 3rd edn, pp 1767–1769

    Google Scholar 

  • Preedy VR, Garlick PJ (1981) Rates of protein synthesis in skin and bone, and their importance in the assessment of protein degradation in the perfused rat hemicorpus. Biochem J 194:373–376

    Google Scholar 

  • Ruderman NB, Houghton CRS, Hems R (1971) Evaluation of the isolated perfused rat hind-quarter for the study of muscle metabolism. Biochem J 124:639–651

    Google Scholar 

  • Schwenen M (1981) Skelettmuskulatur und metabolische Homöostase: Physiologische und pathophysiologische Aspekte der Glucocorticoidwirkung auf den Muskelstoffwechsel. Habilitationsschrift, Universität Düsseldorf

  • Seifter S, Dayton S, Novic B, Muntwyler E (1950) The estimation of glycogen with the anthrone reagent. Arch Biochem 25:191–200

    Google Scholar 

  • Shimizu S, Tani Y, Yamada H, Tabata M, Murachi T (1980) Enzymatic determination of serum free fatty acids: A colorimetric method. Anal Biochem 107:193–198

    Google Scholar 

  • Szasz G, Gruber W, Bernt E (1976) Creatine Kinase in Serum. 1. Determination of optimum reaction conditions. Clin Chem 22:650–656

    Google Scholar 

  • Warren S (1943) Effects of radiation on normal tissues XIV. Effects on striated muscle. Arch Pathol 35:347–349

    Google Scholar 

  • Williamson DH (1974) L-Alanin: Bestimmung mit Alanin-Dehydrogenase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, Vol II, 3rd edn. pp 1724–1727

    Google Scholar 

  • Wollenberger A, Ristau O, Schoffa G (1960) Eine einfache Technik der extrem schnellen Abkühlung größerer Gewebestücke. Pflügers Arch 270:399–412

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. L.E. Feinendegen on the occasion of his 60th birthday

On leave from the University of Rochester, School of Medicine and Dentistry, Department of Biophysics, Rochester, New York, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altman, K.I., Schwenen, M. Increased catabolism of muscle proteins as a manifestation of radiation myopathy. Radiat Environ Biophys 26, 171–180 (1987). https://doi.org/10.1007/BF01213703

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01213703

Keywords

Navigation