Skip to main content
Log in

Feedback classification of nonlinear control systems on 3-manifolds

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

We consider nonlinear control-affine systems with two inputs evolving on three-dimensional manifolds. We study their local classification under static state feedback. Under the assumption that the control vector fields are independent we give complete classification of generic systems. We prove that out of a “singular” smooth curve a generic control system is either structurally stable and thus equivalent to one of six canonical forms (models) or finitely determined and thus equivalent to one of two canonical forms with real parameters. Moreover, we show that at points of the “singular” curve the system is not finitely determined and we give normal forms containing functional moduli. We also study geometry of singularities, i.e., we describe surfaces, curves, and isolated points where the system admits its canonical forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold,Mathematical Methods in Classical Mechanics, Springer-Verlag, New York, 1978 (translated from the Russian edition, Moscow, Nauka, 1974).

    Google Scholar 

  2. V. I. Arnold, A. N. Varchenko, and S. M. Gussein-Sade,Singularities of Differentiable Maps, vol. 1, Birhhäuser, Boston, 1985 (translated from the Russian edition, Moscow, Nauka, 1982).

    Google Scholar 

  3. G. R. Belitskii,Normal Forms, Invariants and Local Maps, Naukova Dumka, Kiev, 1979 (in Russian).

    Google Scholar 

  4. G. R. Belitskii, Smooth equivalence of germs of vector fields with one zero or pure imaginary pair of eigenvalues,Functional Anal. Appl.,20(4) (1986), 1–8.

    Google Scholar 

  5. B. Bonnard, On singular extremals in the time minimal control problem in ℝ3,SIAM J. Control Optim.,23 (1985), 794–802.

    Google Scholar 

  6. B. Bonnard, Feedback equivalence for nonlinear controls systems and the time optimal control problem,SIAM J. Control Optim.,29 (1991), 1300–1321.

    Google Scholar 

  7. B. Bonnard, Quadratic control systems,Math. Control Signals Systems,4 (1991), 139–160.

    Google Scholar 

  8. M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon, Sur les systemes non linearies differentiellement plats,C.R. Acad. Sci. Paris Ser. I,315 (1992), 619–624.

    Google Scholar 

  9. M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon, Nonlinear control and Lie-Bäcklund transformations: towards a new differential geometric standpoint,Proc. 33rd CDC, Lake Buena Vista, 1994, pp. 223–267.

  10. M. Fliess, J. Lévine, Ph. Martin, and P. Rouchhon, Flatness and defect in nonlinear systems: introductory theory and applications,Internat. J. Control,61 (1995), 1327–1361.

    Google Scholar 

  11. R. B. Gardner,The Method of Equivalence and Its Applications, vol. 58, SIAM, Philadelphia, PA, 1989.

    Google Scholar 

  12. R. B. Gardner, W. F. Shadwick, and G. R. Wilkens, A geometric isomorphism with application to closed loop controls,SIAM J. Control Optim.,27 (1989), 1361–1368.

    Google Scholar 

  13. M. Golubitsky and V. Guillemin,Stable Mappings and Their Singularities, Springer-Verlag, New York, 1973.

    Google Scholar 

  14. H. Hermes, A. Lundell, and D. Sullivan, Nilpotent bases for distributions and control systems,J. Differential Equations,55 (1984), 385–400.

    Google Scholar 

  15. L. R. Hunt and R. Su, Linear equivalents and nonlinear time-varying systems,Proc. Internat. Symp. MTNS, Santa Monica, 1981, pp. 119–123.

  16. B. Jakubczyk, Equivalence and invariants of nonlinear cntrol systems, in:Nonlinear Controllability and Optional Control, H. J. Sussmann (ed.), Marcel Dekker, New York, 1990.

    Google Scholar 

  17. B. Jakubczyk, Invariants of dynamic feedback and free systems,Proc. ECC, Groningen, 1993, pp. 1510–1513.

  18. B. Jakubczyk and F. Przytycki, Singularities ofk-tuples of vector fields,Dissertationes Math.,213 (1984), 1–64.

    Google Scholar 

  19. B. Jakubczyk and W. Respondek, On linearization of control systems,Bull. Acad. Polon. Sci. Sér. Sci. Math.,28 (1980), 517–522.

    Google Scholar 

  20. B. Jakubczyk and W. Respondek, Feedback equivalence of planar systems and stabilizability, in:Robust Control of Linear Systems and Nonlinear Control, M. A. Kaashoek, J. H. van Schuppen, and A. C. M. Ran (eds.), Birkhäuser, Boston, 1990, pp. 447–456.

    Google Scholar 

  21. B. Jakubczyk and W. Respondek, Feedback classification of analytic control systems in the plane, in:Analysis of Controlled Dynamical Systems, B. Bonnard, B. Bride, J. P. Gauthier, and I. Kupka (eds.), Birkhäuser, Boston, 1991, pp. 263–273.

    Google Scholar 

  22. V. V. Lychagin, Local classification of 1-order nonlinear partial differential equations,Uspekhi Mat. Nauk,30 (1975), 101–171 (English translation inRussian Math. Surveys).

    Google Scholar 

  23. J. Martinet, Sur les singularities des formes differentielles,Ann. Inst. Fourier,20 (1970), 95–178.

    Google Scholar 

  24. J. B. Pomet, A differential geometric setting for dynamic linearization, in:Geometry in Nonlinear Control and Differential Inclusions, B. Jakubczyk, W. Respondek, and T. Rzezuchowski (eds.), Banach Center Publications 32, Institute of Mathematics, Polish Academy of Sciences, Warsaw, 1995, pp. 319–339.

    Google Scholar 

  25. S. Sternberg,Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, NJ, 1964.

    Google Scholar 

  26. K. Tchoń, On normal forms of affine systems under feedback, in:New Trends in Nonlinear Control Theory, J. Descusse, M. Fliess, A. Isidori, and D. Leborgne (eds.), Lecture Notes in Control and Information Sciences, vol. 122, Springer-Verlag, Berlin, 1989, pp. 23–32.

    Google Scholar 

  27. G. R. Wilkens, Local Feedback Equivalence of Control Systems with Three State and Two Control Variables, Ph.D. Thesis, University of North Carolina, 1987.

  28. G. R. Wilkens, The method of equivalence applied to three state, two input control systems,Proc. 29th CDC, Honolulu, 1990, pp. 2074–2079.

  29. M. Zhitomirskii, Finitely determined 1-forms ω, ωlo≠0 are reduced to the models of Darboux and Martinet,Functional Anal. Appl.,19 (1985), 71–72.

    Google Scholar 

  30. M. Zhitomirskii,Typical Singularities of Differential 1-Forms and Pfaffian Equations, Translations of Mathematical Monographs, vol. 113, AMS, Providence, RI, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Respondek, W., Zhitomirskii, M. Feedback classification of nonlinear control systems on 3-manifolds. Math. Control Signal Systems 8, 299–333 (1995). https://doi.org/10.1007/BF01209688

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01209688

Key words

Navigation