Skip to main content
Log in

Quantum adiabatic theorem with energy gap regularization

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The dynamics of a nonstationary quantum system whose Hamiltonian explicitly depends on time is called adiabatic if a system state that is an eigenstate of the Hamiltonian at the initial instant of time remains close to this eigenstate throughout the evolution. The degree of such closeness depends on the smallness of the parameter that determines the rate of change of the Hamiltonian. It is usually believed that one of the factors playing a decisive role for the stability of the adiabatic dynamics is the structure of the spectrum of the Hamiltonian. As the quantum adiabatic theorem states in its usual formulation, deviations from the adiabatic evolution can be estimated from above by the ratio of the rate of change of the Hamiltonian to the minimum distance between the energy of the state that approximates the adiabatic dynamics and the rest of the spectrum of the Hamiltonian. We analyze this dependence and prove theorems showing that the efficiency of the adiabatic approximation is more influenced by the rate of change of the Hamiltonian eigenvectors than by the dynamics of the spectrum. In a vast majority of physically meaningful cases, it turns out that controlling the dynamics of eigenvectors is sufficient for ensuring the adiabaticity, regardless of the dynamics of the spectrum as such.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This condition is necessary for applying the convergence theorem, as we see below. If it is violated, the first integral in (12) also diverges, and the whole estimate becomes trivial.

  2. The above conditions are also satisfied by the representation of the Hamiltonian for \(s=s^*\) in the form \(\mathrm H_{s^*}(\lambda)=\mu\mathbb{I}+\lambda A+o(\lambda)\), but the identity matrix \(\mathbb{I}\) can be discarded without loss of generality.

  3. See relation (25) and the preceding paragraph.

References

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics, Elsevier (1982); Vol. 5: Statistical Physics, Elsevier (2013).

    Google Scholar 

  2. M. Born, “Das Adiabatenprinzip in der Quantenmechanik,” Z. Phys., 40, 167–192 (1926).

    Article  ADS  Google Scholar 

  3. M. Born and V. Fock, “Beweis des adiabatensatzes,” Z. Phys., 51, 165–180 (1928).

    Article  ADS  Google Scholar 

  4. T. Kato, “On the adiabatic theorem of quantum mechanics,” J. Phys. Soc. Japan, 5, 435–439 (1950).

    Article  ADS  Google Scholar 

  5. A. Messiah, Quantum Mechanics (Dover Books on Physics), Dover, Mineola, NY (2014).

    MATH  Google Scholar 

  6. J. E. Avron and A. Elgart, “Adiabatic theorem without a gap condition,” Commun. Math. Phys., 203, 445–463 (1999); arXiv: math-ph/9805022.

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Teufel, “A Note on the adiabatic theorem without gap condition,” Lett. Math. Phys., 58, 261–266 (2001).

    Article  MathSciNet  Google Scholar 

  8. O. Lychkovskiy, O. Gamayun, and V. Cheianov, “Time scale for adiabaticity breakdown in driven many-body systems and orthogonality catastrophe,” Phys. Rev. Lett., 119, 200401, 6 pp. (2017); arXiv: 1611.00663.

    Article  ADS  MathSciNet  Google Scholar 

  9. N. Il’in, A. Aristova, and O. Lychkovskiy, “Adiabatic theorem for closed quantum systems initialized at finite temperature,” Phys. Rev. A, 104, L030202, 6 pp. (2021).

    Article  ADS  MathSciNet  Google Scholar 

  10. O. Lychkovskiy, O. Gamayun, and V. Cheianov, “Necessary and sufficient condition for quantum adiabaticity in a driven one-dimensional impurity-fluid system,” Phys. Rev. B, 98, 024307, 9 pp. (2018); arXiv: 1804.03726.

    Article  ADS  Google Scholar 

  11. R. Schützhold and G. Schaller, “Adiabatic quantum algorithms as quantum phase transitions: First versus second order,” Phys. Rev. A, 74, 060304, 4 pp. (2006); arXiv: quant-ph/0608017.

    Article  ADS  Google Scholar 

  12. J. Latorre and R. Orús, “Adiabatic quantum computation and quantum phase transitions,” Phys. Rev. A, 69, 062302, 5 pp. (2004); arXiv: quant-ph/0308042.

    Article  ADS  Google Scholar 

  13. J. M. Bowman, “Reduced dimensionality theory of quantum reactive scattering,” J. Phys. Chem., 95, 4960–4968 (1991).

    Article  Google Scholar 

  14. U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann, “Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results,” J. Chem. Phys., 92, 5363–5376 (1990).

    Article  ADS  Google Scholar 

  15. K. Bergmann, N. V. Vitanov, and B. W. Shore, “Perspective: Stimulated Raman adiabatic passage: The status after 25 years,” J. Phys. Chem., 142, 170901, 21 pp. (2015).

    Article  Google Scholar 

  16. J. C. Budich and B. Trauzettel, “From the adiabatic theorem of quantum mechanics to topological states of matter,” Phys. Status Solidi RRL, 7, 109–129 (2013).

    Article  Google Scholar 

  17. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (Dover Books on Physics), Dover, Mineola, NY (2003).

    MATH  Google Scholar 

  18. D. J. Thouless, “Quantization of particle transport,” Phys. Rev. B, 27, 6083–6087 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, and I. Bloch, “A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice,” Nature Phys., 12, 350–354 (2016); arXiv: 1507.02225.

    Article  ADS  Google Scholar 

  20. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum computation by adiabatic evolution,” arXiv: quant-ph/0001106.

  21. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, “A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem,” Science, 292, 472–475 (2001); arXiv: quant-ph/0104129.

    Article  ADS  MathSciNet  Google Scholar 

  22. D. A. Lidar, A. T. Rezakhani, and A. Hamma, “Adiabatic approximation with exponential accuracy for many-body systems and quantum computation,” J. Math. Phys., 50, 102106, 26 pp. (2009).

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: Dark-state polaritons,” Phys. Rev. A, 65, 022314, 12 pp. (2002); arXiv: quant-ph/0106066.

    Article  ADS  Google Scholar 

  24. M. Kolodrubetz, D. Sels, P. Mehta, and A. Polkovnikov, “Geometry and non-adiabatic response in quantum and classical systems,” Phys. Rep., 697, 1–87 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  25. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover, Mineola, NY (1999).

    Google Scholar 

  26. M. M. Wilde, Quantum Information Theory, Cambridge Univ. Press, New York (2013).

    Book  Google Scholar 

  27. D. Markham, J. A. Miszczak, Z. Puchała, and K. Życzkowski, “Quantum state discrimination: A geometric approach,” Phys. Rev. A, 77, 042111, 9 pp. (2008); arXiv: 0711.4286.

    Article  ADS  MathSciNet  Google Scholar 

  28. L. D. Landau, “Zur theorie der energieubertragung. II,” Phys. Z. Sowjetunion, 2, 46–51 (1932).

    MATH  Google Scholar 

  29. C. Zener, “Non-adiabatic crossing of energy levels,” Proc. R. Soc. London Ser. A, 137, 696–702 (1932).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author is grateful to O. V. Lychkovskiy for the useful discussions.

Funding

This paper was supported by the Russian Science Foundation grant No. 17-71-20158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Ilyin.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 211, pp. 121–135 https://doi.org/10.4213/tmf10195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyin, N.B. Quantum adiabatic theorem with energy gap regularization. Theor Math Phys 211, 545–557 (2022). https://doi.org/10.1134/S0040577922040080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922040080

Keywords

Navigation