Skip to main content
Log in

Calcium pools, calcium entry, and cell growth

  • Review
  • Published:
Bioscience Reports

Abstract

The Ca2+ pump and Ca2+ release functions of intracellular Ca2+ pools have been well characterized. However, the nature and identity of Ca2+ pools as well as the physiological implications of Ca2+levels within them, have remained elusive. Ca2+ pools appear to be contained within the endoplasmic reticulum (ER); however, ER is a heterogeneous and widely distributed organelle, with numerous other functions than Ca2+ regulation. Studies described here center on trying to determine more about subcellular distribution of Ca2+ pools, the levels of Ca2+ within Ca2+ pools, and how these intraluminal Ca2+ levels may be physiologically related to ER function. Experiments utilizingin situ high resolution subcellular morphological analysis of ER loaded with ratiometric fluroescent Ca2+ dyes, indicate a wide distribution of inositol 1,4,5-trisphosphate (InsP3)-sensitive Ca2+ pools within cells, and large changes in the levels of Ca2+ within pools following InsP3-mediated Ca2+ release. Such changes in Ca2+ may be of great significance to the translation, translocation, and folding of proteins in ER, in particular with respect to the function of the now numerously described luminal Ca2+-sensitive chaperonin proteins. Studies have also focussed on the physiological role of pool Ca2+ changes with respect to cell growth. Emptying of pools using Ca2+ pump blockers can result in cells entering a stable quiescent G0-like growth state. After treatment with the irreversible pump blocker, thapsigargin, cells remain in this state until they are stimulated with essential fatty acids whereupon new pump protein is synthesized, functional Ca2+ pools return, and cells reenter the cell cycle. During the Ca2+ pool-depleted growth-arrested state, cells express a Ca2+ influx channel that is distinct from the store-operated Ca2+ influx channels activated after short-term depletion of Ca2+ pools. Overall, these studies indicate that significant changes in intraluminal ER Ca2+ do occur and that such changes appear linked to alteration of essential ER functions as well as to the cell cycle-state and the growth of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gill, D. L., Ghosh, T. K., Bian, J., Short, A. D., Waldron, R. T. and Rybak, S. L. (1992) Function and organization of the inositol 1,4,5-trisphosphate-sensitive calcium pool.Adv. 2nd Messenger Phosphoprotein Res. 26:265–308.

    Google Scholar 

  2. Berridge, M. J. (1993) Inositol trisphosphate and calcium signalling.Nature 361:315–325.

    PubMed  Google Scholar 

  3. Gill, D. L., Ghosh, T. K., Short, A. D., Bian, J. and Waldron, R. T. (1993) GTP-mediated communication between intracellular calcium pools.Handbook Exp. Pharmacol. 108:625–649.

    Google Scholar 

  4. Chueh, S. H., Mullaney, J. M., Ghosh, T. K., Zachary, A. L. and Gill, D. L. (1987) GTP- and inositol 1,4,5-trisphosphate-activated intracellular calcium movements in neuronal and smooth muscle cell lines.J. Biol. Chem. 262:13857–13864.

    PubMed  Google Scholar 

  5. Mullaney, J. M., Chueh, S. H., Ghosh, T. K. and Gill, D. L. (1987) Intracellular calcium uptake activated by GTP: Evidence for a possible guanine nucleotide-induced transmembrane conveyance of intracellular calcium.J. Biol. Chem. 262:13865–13872.

    PubMed  Google Scholar 

  6. Mullaney, J. M., Yu, M., Ghosh, T. K. and Gill, D. L. (1988) A GTP-regulatory mechanism mediates calcium entry into the inositol 1,4,5-trisphosphate-releasable calcium pool.Proc. Natl. Acad. Sci. USA 85:2499–2503.

    PubMed  Google Scholar 

  7. Ghosh, T. K., Mullaney, J. M., Tarazi, F. I. and Gill, D. L. (1989) GTP-activated communication between distinct inositol 1,4,5-trisphosphate-sensitive and -insensitive calcium pools.Nature 340:236–239.

    PubMed  Google Scholar 

  8. Bian, J., Ghosh, T. K., Wang, J. C. and Gill, D. L. (1991) Identification of intracellular calcium pools: Selective modification by thapsigargin.J. Biol. Chem. 266:8801–8806.

    PubMed  Google Scholar 

  9. Short, A. D., Klein, M. G., Schneider, M. F. and Gill, D. L. (1993) Inositol 1,4,5-trisphosphate-mediated quantal Ca2+ release measured by high resolution imaging of Ca2+ within organelles.J. Biol. Chem. 268:25887–25893.

    PubMed  Google Scholar 

  10. Ghosh, T. K., Bian, J., Short, A. D. and Gill, D. L. (1991) Persistent intracellular calcium pool depletion by thapsigargin and its influence on cell growth.J. Biol Chem. 266:224690–24697.

    Google Scholar 

  11. Waldron, R. T., Short, A. D. and Gill, D. L. (1995) “Thapsigargin-resistant intracellular calcium pumps: role in calcium pool function and growth of thapsigargin-resistant cells”J. Biol. Chem. 270:11955–11961.

    PubMed  Google Scholar 

  12. Gill, D. L., Ueda, T., Chueh, S. H. and Noel, M. W. (1986) Ca2+ release from endoplasmic reticulum is mediated by a guanine nucleotide regulatory mechanism.Nature 320:461–464.

    PubMed  Google Scholar 

  13. Ueda, T., Chueh, S. H., Noel, M. W. and Gill, D. L. (1986) Influence of inositol 1,4,5-trisphosphate and guanine nucleotides on intracellular calcium release within the N1E-115 neuronal cell line.J. Biol. Chem. 261:3184–3192.

    PubMed  Google Scholar 

  14. Chueh, S. H. and Gill, D. L. (1986) Inositol 1,4,5-trisphosphate and guanine nucleotides release Ca2+ from endoplasmic reticulum via distinct mechanisms.J. Biol. Chem. 261:13883–13886.

    PubMed  Google Scholar 

  15. Rys-Sikora, K. E., Ghosh, T. K. and Gill, D. L. (1994) “Modification of GTP-activated calcium translocation by fatty acyl-CoA esters: Evidence for a GTP-induced perfusion event.”J. Biol. Chem. 269:31607–31613.

    PubMed  Google Scholar 

  16. Ferro-Novick, S. and Novick, P. (1993) The role of GTP-binding proteins in transport along the exocytic pathway.Annu. Rev. Cell Biol. 9:575–599.

    PubMed  Google Scholar 

  17. Volpe, P., Krause, K-H., Hashimoto, S., Zorzato, F., Pozzan, T., Meldolesi, J. & Lew, D. P. (1988) “Calciosome,” a cytoplasmic organelle: the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells?Proc. Natl. Acad. Sci. USA 85:1091–1095.

    PubMed  Google Scholar 

  18. Taylor, C. W. and Marshall, I. C. B. (1992) Calcium and inositol 1,4,5-trisphosphate receptors: a complex relationship.TIBS 17:403–407.

    PubMed  Google Scholar 

  19. Missiaen, L., De Smedt, H., Droogmans, G. and Casteels, R. (1992) Ca2+ release induced by inositol 1,4,5-trisphosphate is a steady-state phenomenon controlled by luminal Ca2+ in permeabilized cells.Nature 357:599–602.

    PubMed  Google Scholar 

  20. Putney, J. W., Jr. (1990) Capacitative calcium entry revisited.Cell Calcium 11:611–624.

    PubMed  Google Scholar 

  21. Randriamampita, C. and Tsien, R. Y. (1993) Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx.Nature 364:809–814.

    PubMed  Google Scholar 

  22. Fasolato, C., Hoth, M. and Penner, R. (1993) A GTP-dependent step in the activation mechanism of capacitative calcium influx.J. Biol. Chem. 268:20737–20740.

    PubMed  Google Scholar 

  23. Bird, G. S. and Putney, J. W., Jr. (1993) Inhibition of thapisgargin-induced calcium entry by microinjected guanine nucleotide analogues: Evidence for the involvement of a small G-protein in capacitative calcium entry.J. Biol. Chem. 268:21486–21488.

    PubMed  Google Scholar 

  24. Sambrook, J. F. (1990) The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum.Cell 61:197–199.

    PubMed  Google Scholar 

  25. Koch, G. L. E. (1990) The endoplasmic reticulum and calciumstorage.BioEssays 12:527–531.

    PubMed  Google Scholar 

  26. Brostrom, M. A., Prostko, C. R., Gmitter-Yellen, D., Grandison, L. J., Kuznetsov, G., Wong, W. L. and Brostrom, C. O. (1991) Inhibition of translational initiation by metallo-endoprotease antagonists: evidence for involvement of sequestered Ca2+ stores.J. Biol. Chem. 266:7037–7043.

    PubMed  Google Scholar 

  27. Kuznetsov, G., Brostrom, M. A. and Brostrom, C. O. (1992) Demonstration of a calcium requirement for secretory protein processing and export. Differential effects of calcium and dithiothreitol.J. Biol. Chem. 267:3932–3939.

    PubMed  Google Scholar 

  28. Lodish, H. F., Kong, N. and Wikström, L. (1992) Calcium is required for folding of newly made subunits of the asialoglycoprotein receptor within the endoplasmic reticulum.J. Biol. Chem. 267:12753–12760.

    PubMed  Google Scholar 

  29. Wikström, L. and Lodish, H. F. (1993) Unfolded H2b asialoglycoprotein receptor subunit polypeptides are selectively degraded within the endoplasmic reticulum.J. Biol. Chem. 268:14412–14416.

    PubMed  Google Scholar 

  30. Kuznetsov, G., Brostrom, M. A. and Brostrom, C. O. (1992) Role of endoplasmic reticular calcium in oligosaccharide processing of alpha 1-antitrypsin.J. Biol. Chem. 268:2001–2008.

    Google Scholar 

  31. Lodish, H. F. and Kong, N. (1990) Perturbation of cellular calcium blocks exit of secretory proteins from the rough endoplasmic reticulum.J. Biol. Chem. 265:10893–10899.

    PubMed  Google Scholar 

  32. Wileman, T., Kane, L. P., Carson, G. R. and Terhorst, C. (1991) Depletion of cellular calcium accelerates protein degradation in the endoplasmic reticulum.J. Biol. Chem. 266:4500–4507.

    PubMed  Google Scholar 

  33. Milner, R. E., Famulski, K. S. and Michalak, M. (1992) Calcium binding proteins in the sarcoplasmic/endoplasmic reticulum of muscle and nonmuscle cells.Mol. Cell. Biochem. 112:1–13.

    PubMed  Google Scholar 

  34. Michalak, M., Milner, R. E., Burns, K. and Opas, M. (1992) Calreticulin.Biochem. J. 285:681–692.

    PubMed  Google Scholar 

  35. Haas, I. G. and Wabl, M. (1983) Immunoglobulin heavy chain binding protein.Nature 306:387–389.

    PubMed  Google Scholar 

  36. Suzuki, C. K., Bonifacino, J. S., Lin, A. Y., Davis, M. M. and Klausner, R. D. (1991) Regulating the retention of T-cell receptor alpha chain variants within the endoplasmic reticulum: Ca2+-dependent association with BiP.J. Cell Biol. 114:189–205.

    PubMed  Google Scholar 

  37. Wenfeng, W. L., Alexandre, S., Cao, X. and Lee, A. S. (1993) Transactivation of the grp78 promoter by Ca2+ depletion: a comparative analysis with A23187 and the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin.J. Biol. Chem. 268:12003–12009.

    PubMed  Google Scholar 

  38. Nigam, S. J., Goldberg, A. L., Ho, S., Rohde, M. F., Bush, K. T. and Sherman, M. Y. (1994) A set of endoplasmic reticulum proteins possessing properties of molecular chaperons includes Ca2+-binding proteins and members of the thioredoxin superfamily.J. Biol. Chem. 269:1744–1749.

    PubMed  Google Scholar 

  39. Milner, R. E., Baksh, S., Shemanko, C., Carpenter, M. R., Smillie, L., Vance, J. E., Opas, M. and Michalak, M. (1991) Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum.J. Biol. Chem. 266:7155–7165.

    PubMed  Google Scholar 

  40. Wada, I., Rindress, D., Cameron, P. H., Ou, W.-I., Doherty, J. J., Louvard, D., Bell, A. W., Dignard, D., Thomas, D. Y. and Bergeron, J. J. M. (1991) SSRa and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane.J. Biol. Chem. 266:19599–19610.

    PubMed  Google Scholar 

  41. Jackson, M. R., Cohen-Doyle, M. F., Peterson, P. A., and Williams, D. B. (1993) Regulation of MHC Class I transport by the molecular chaperone, calnexin (p88, IP90).Science 263:384–387.

    Google Scholar 

  42. Ozawa, M. and Muramatsu, T. (1993) Reticulocalbin, a novel endoplasmic reticulum resident Ca2+-binding protein with multiple EF-hand motifs and a carboxyl-terminal HDEL sequence.J. Biol. Chem. 268:699–705.

    PubMed  Google Scholar 

  43. Short, A. D., Bian, J., Ghosh, T. K., Waldron, R. T., Rybak, S. L. and Gill, D. L. (1993) Intracellular Ca2+ pool content is linked to control of cell growth.Proc. Natl. Acad. Sci. USA 90:4986–4990.

    PubMed  Google Scholar 

  44. Glennon, M. C., Bird, G. S., Takemura, H., Thastrup, O., Leslie, B. A. and Putney, J. W., Jr. (1992)In situ imaging of agonist-sensitive calcium pools in AR4-2J pancreatoma cells.J. Biol. Chem. 267:25568–25575.

    PubMed  Google Scholar 

  45. Muallem, S., Pandol, S. and Beeker, T. G. (1989) Hormone-evoked calcium release from intracellular stores is a quantal process.J. Biol. Chem. 264:205–212.

    PubMed  Google Scholar 

  46. Ghosh, T. K., Eis, P. S., Mullaney, J. M., Ebert, C. L. and Gill, D. L. (1988) Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin.J. Biol. Chem. 263:11075–11079.

    PubMed  Google Scholar 

  47. Glennon, M. C., Bird, G. St J., Kwan, C. Y. and Putney, J. W. (1992) Actions of vasopressin and the Ca2+-ATPase inhibitor, thapsigarin, on Ca2+ signalling in hepatocytes.J. Biol. Chem. 267:8230–8233.

    PubMed  Google Scholar 

  48. Hajnöczky, G., Lin, C. and Thomas, A. P. (1994) Luminal communication between intracellular calcium stores modulated by GTP and the cytoskeleton.J. Biol. Chem. 269:10280–10287.

    PubMed  Google Scholar 

  49. Clarke, D. M., Loo, T. W., Inesi, G. and MacLennan, D. H. (1989) Location of high affinity Ca2+ binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase.Nature 339:476–478.

    PubMed  Google Scholar 

  50. Waldron, R. T., Short, A. D., Meadows, J. J., Ghosh, T. K. and Gill, D. L. (1994) Endoplasmic reticulum calcium pump expression and control of cell growth.J. Biol. Chem. 269:11927–11933.

    PubMed  Google Scholar 

  51. Graber, M. N., Alfonso, A. and Gill, D. L. (1995) Ca2+ pools and cell growth: arachidonic acid induces recovery of cells growth-arrested by Ca2+ pool depletion”J. Biol. Chem. 270 (In press).

  52. Missiaen, L., De Smedt, H., Parys, J. B., Oike, M. and Casteels, R. (1994) Kinetics of empty store-activated Ca2+ influx in HeLa cells.J. Biol. Chem. 269:5817–5823.

    PubMed  Google Scholar 

  53. Ufret-Vincenty, C. A., Short, A. D. and Gill, D. L. (1995) A novel Ca2+ entry mechanism is turned on during growth arrest induced by Ca2+ pool depletion.J. Biol. Chem. 270:26790–26793.

    PubMed  Google Scholar 

  54. Premack, B. A., McDonald, T. V. and Gardner, P. (1994) Activation of Ca2+ current in Jurkat T cells following the depletion of Ca2+ stores by microsomal Ca2+-ATPase inhibitors.J. Immunol. 152:5226–5239.

    PubMed  Google Scholar 

  55. Müller, C. E. and Daly, J. W. (1993) Stimulation of calcium release by caffeine analogs in pheochromocytoma cells.Biochem. Pharmacol. 46:1825–1829.

    PubMed  Google Scholar 

  56. Rousseau, E., LaDine, J., Liu, Q-Y. and Meissner, G. (1988) Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds.Arch. Biochem. Biophys. 267:75–86.

    PubMed  Google Scholar 

  57. Furuya, Y., Lundmo, P., Short, A. D., Gill, D. L. and Isaacs, J. T. (1994) Endoplasmic reticulum calcium pump as a therapeutic target for activating programmed death of nonproliferating androgen-dependent prostatic cancer cells.Cancer Res. 54:6167–6175.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gill, D.L., Waldron, R.T., Rys-Sikora, K.E. et al. Calcium pools, calcium entry, and cell growth. Biosci Rep 16, 139–157 (1996). https://doi.org/10.1007/BF01206203

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01206203

Key words

Navigation