Skip to main content

The STIM-Orai Pathway: Conformational Coupling Between STIM and Orai in the Activation of Store-Operated Ca2+ Entry

  • Chapter
  • First Online:
Store-Operated Ca²⁺ Entry (SOCE) Pathways

Abstract

Store-operated Ca2+ entry fulfills a crucial role in controlling Ca2+ signals in almost all cells. The Ca2+-sensing stromal interaction molecule (STIM) proteins in the endoplasmic reticulum (ER) undergo complex conformational changes in response to depleted ER luminal Ca2+, allowing them to unfold and become trapped in ER-plasma membrane (PM) junctions. Dimers of STIM proteins trap and gate the plasma membrane Orai Ca2+ channels within these junctions to generate discrete zones of high Ca2+ and regulate sensitive Ca2+-dependent intracellular signaling pathways. The STIM-Orai activating region (SOAR) of STIM1 becomes exposed upon store depletion and promotes trapping of Orai1 at the PM. Residue Phe-394 within SOAR forms an integral part of the high-affinity Orai1-interacting site. Our results demonstrate that only a single active site within the dimeric SOAR domain of STIM1 is required for the activation of Orai1 channel activity. This unimolecular model is strongly supported by evidence of variable STIM1:Orai1 stoichiometry reported in many studies. We hypothesize that unimolecular coupling promotes cross-linking of channels, localizing Ca2+ signals, and regulating channel activity. We have also identified a key “nexus” region in Orai1 near the C-terminal STIM1-binding site that can be mutated to constitutively activate Ca2+ entry, mimicking STIM1 activated channels. This suggests that STIM1 mediates gating of Orai1 in an allosteric manner via interaction with the Orai1 C-terminus alone. This model suggests the dual role of STIM1 in regulating both localization and gating of Orai1 channels and has important implications for the regulation of SOCE-mediated downstream signaling and the kinetics of channel activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amcheslavsky A, Wood ML, Yeromin AV, Parker I, Freites JA, Tobias DJ, Cahalan MD (2015) Molecular biophysics of Orai store-operated Ca2+ channels. Biophys J 108:237–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Zhou Y, Nwokonko RM, Loktionova NA, Wang X, Xin P, Trebak M, Wang Y, Gill DL (2016) The Orai1 store-operated calcium channel functions as a hexamer. J Biol Chem 291:25764–25775

    Article  CAS  PubMed  Google Scholar 

  • Covington ED, MM W, Lewis RS (2010) Essential role for the CRAC activation domain in store-dependent oligomerization of STIM1. Mol Biol Cell 21:1897–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derler I, Plenk P, Fahrner M, Muik M, Jardin I, Schindl R, Gruber HJ, Groschner K, Romanin C (2013) The extended transmembrane Orai1 N-terminal (ETON) region combines binding interface and gate for Orai1 activation by STIM1. J Biol Chem 288:29025–29034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derler I, Jardin I, Romanin C (2016) Molecular mechanisms of STIM/Orai communication. Am J Physiol Cell Physiol 310:C643–C662

    PubMed  PubMed Central  Google Scholar 

  • Fahrner M, Muik M, Schindl R, Butorac C, Stathopulos P, Zheng L, Jardin I, Ikura M, Romanin C (2014) A coiled-coil clamp controls both conformation and clustering of stromal interaction molecule 1 (STIM1). J Biol Chem 289:33231–33244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gudlur A, Quintana A, Zhou Y, Hirve N, Mahapatra S, Hogan PG (2014) STIM1 triggers a gating rearrangement at the extracellular mouth of the ORAI1 channel. Nat Commun 5:5164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoover PJ, Lewis RS (2011) Stoichiometric requirements for trapping and gating of Ca2+ release-activated Ca2+ (CRAC) channels by stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci U S A 108:13299–13304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338:1308–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kar P, Parekh AB (2015) Distinct spatial Ca2+ signatures selectively activate different NFAT transcription factor isoforms. Mol Cell 58:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korzeniowski MK, Popovic MA, Szentpetery Z, Varnai P, Stojilkovic SS, Balla T (2009) Dependence of STIM1/Orai1-mediated calcium entry on plasma membrane phosphoinositides. J Biol Chem 284:21027–21035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Lu J, Xu P, Xie X, Chen L, Xu T (2007) Mapping the interacting domains of STIM1 and Orai1 in CRAC channel activation. J Biol Chem 282:29448–20456

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liu L, Deng Y, Ji W, Du W, Xu P, Chen L, Xu T (2011) Graded activation of CRAC channel by binding of different numbers of STIM1 to Orai1 subunits. Cell Res 21:305–315

    Article  CAS  PubMed  Google Scholar 

  • Lis A, Zierler S, Peinelt C, Fleig A, Penner R (2010) A single lysine in the N-terminal region of store-operated channels is critical for STIM1-mediated gating. J Gen Physiol 136:673–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma G, Wei M, He L, Liu C, Wu B, Zhang SL, Jing J, Liang X, Senes A, Tan P, Li S, Sun A, Bi Y, Zhong L, Si H, Shen Y, Li M, Lee MS, Zhou W, Wang J, Wang Y, Zhou Y (2015) Inside-out Ca(2+) signalling prompted by STIM1 conformational switch. Nat Commun 6:7826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maus M, Jairaman A, Stathopulos PB, Muik M, Fahrner M, Weidinger C, Benson M, Fuchs S, Ehl S, Romanin C, Ikura M, Prakriya M, Feske S (2015) Missense mutation in immunodeficient patients shows the multifunctional roles of coiled-coil domain 3 (CC3) in STIM1 activation. Proc Natl Acad Sci U S A 112:6206–6211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNally BA, Somasundaram A, Jairaman A, Yamashita M, Prakriya M (2013) The C- and N-terminal STIM1 binding sites on Orai1 are required for both trapping and gating CRAC channels. J Physiol 591:2833–2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muik M, Fahrner M, Derler I, Schindl R, Bergsmann J, Frischauf I, Groschner K, Romanin C (2009) A cytosolic homomerization and a modulatory domain within STIM1 C-terminus determine coupling to ORAI1 channels. J Biol Chem 284:8421–8426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullins FM, Lewis RS (2016) The inactivation domain of STIM1 is functionally coupled with the Orai1 pore to enable Ca2+-dependent inactivation. J Gen Physiol 147:153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullins FM, Yen M, Lewis RS (2016) Orai1 pore residues control CRAC channel inactivation independently of calmodulin. J Gen Physiol 147:137–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Palty R, Stanley C, Isacoff EY (2015) Critical role for Orai1 C-terminal domain and TM4 in CRAC channel gating. Cell Res 25:963–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perni S, Dynes JL, Yeromin AV, Cahalan MD, Franzini-Armstrong C (2015) Nanoscale patterning of STIM1 and Orai1 during store-operated Ca2+ entry. Proc Natl Acad Sci U S A 112:E5533–E5542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95:1383–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putney JW Jr., Steinckwich-Besancon N, Numaga-Tomita T, Davis FM, Desai PN, D’Agostin DM, Wu S, Bird GS (2016) The functions of store-operated calcium channels. Biochim Biophys Acta. doi: 10.1016/j.bbamcr.2016.11.028

  • Rothberg BS, Wang Y, Gill DL (2013) Orai channel pore properties and gating by STIM: implications from the Orai crystal structure. Sci Signal 6:pe9

    Article  PubMed  PubMed Central  Google Scholar 

  • Scrimgeour N, Litjens T, Ma L, Barritt GJ, Rychkov GY (2009) Properties of Orai1 mediated store-operated current depend on the expression levels of STIM1 and Orai1 proteins. J Physiol 587:2903–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim AH, Tirado-Lee L, Prakriya M (2015) Structural and functional mechanisms of CRAC channel regulation. J Mol Biol 427:77–93

    Article  CAS  PubMed  Google Scholar 

  • Soboloff J, Rothberg BS, Madesh M, Gill DL (2012) STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 13:549–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stathopulos PB, Schindl R, Fahrner M, Zheng L, Gasmi-Seabrook GM, Muik M, Romanin C, Ikura M (2013) STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat Commun 4:2963

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Murakami M, Watanabe H, Hasegawa H, Ohba T, Munehisa Y, Nobori K, Ono K, Iijima T, Ito H (2007) Essential role of the N-terminus of murine Orai1 in store-operated Ca2+ entry. Biochem Biophys Res Commun 356:45–52

    Article  CAS  PubMed  Google Scholar 

  • Tirado-Lee L, Yamashita M, Prakriya M (2015) Conformational changes in the Orai1 C-terminus evoked by STIM1 binding. PLoS One 10:e0128622

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang Y, Zhou Y, Hendron E, Mancarella S, Andrake MD, Rothberg BS, Soboloff J, Gill DL (2014) Distinct Orai-coupling domains in STIM1 and STIM2 define the Orai-activating site. Nat Commun 5:3183

    PubMed  PubMed Central  Google Scholar 

  • Yang X, Jin H, Cai X, Li S, Shen Y (2012) Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci U S A 109:5657–5662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen M, Lokteva LA, Lewis RS (2016) Functional analysis of Orai1 concatemers supports a hexameric stoichiometry for the CRAC channel. Biophys J 111:1897–1907

    Article  CAS  PubMed  Google Scholar 

  • Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11:337–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Zhou MH, Hu C, Kuo E, Peng X, Hu J, Kuo L, Zhang SL (2013) Differential roles of the C and N termini of Orai1 protein in interacting with stromal interaction molecule 1 (STIM1) for Ca2+ release-activated Ca2+ (CRAC) channel activation. J Biol Chem 288:11263–11272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Meraner P, Kwon HT, Machnes D, Oh-hora M, Zimmer J, Huang Y, Stura A, Rao A, Hogan PG (2010) STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat Struct Mol Biol 17:112–116

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Srinivasan P, Razavi S, Seymour S, Meraner P, Gudlur A, Stathopulos PB, Ikura M, Rao A, Hogan PG (2013) Initial activation of STIM1, the regulator of store-operated calcium entry. Nat Struct Mol Biol 20:973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Trebak M, Gill DL (2015a) Calcium signals tune the fidelity of transcriptional responses. Mol Cell 58:197–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Wang X, Wang X, Loktionova NA, Cai X, Nwokonko RM, Vrana E, Wang Y, Rothberg BS, Gill DL (2015b) STIM1 dimers undergo unimolecular coupling to activate Orai1 channels. Nat Commun 6:8395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Cai X, Loktionova NA, Wang X, Nwokonko RM, Wang X, Wang Y, Rothberg BS, Trebak M, Gill DL (2016) The STIM1-binding site nexus remotely controls Orai1 channel gating. Nat Commun 7:13725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yandong Zhou or Donald L. Gill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nwokonko, R.M., Cai, X., Loktionova, N.A., Wang, Y., Zhou, Y., Gill, D.L. (2017). The STIM-Orai Pathway: Conformational Coupling Between STIM and Orai in the Activation of Store-Operated Ca2+ Entry. In: Groschner, K., Graier, W., Romanin, C. (eds) Store-Operated Ca²⁺ Entry (SOCE) Pathways. Advances in Experimental Medicine and Biology, vol 993. Springer, Cham. https://doi.org/10.1007/978-3-319-57732-6_5

Download citation

Publish with us

Policies and ethics