Skip to main content
Log in

Microbial degradation and utilization of cassava peel

  • Research Papers
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cassava peel was readily degraded and utilized by a strain ofRhizopus growing in a solid-state fermentation. Growth was maximal at 45°C and was proportional to the degree of hydrolysis of the peel. The yield of biomass, as weight of dry mycellum from the reducing sugars of the peel, was 51%. After 72 h fermentation, the peel contained 76% moisture, 6% cellulose, 7% hemicellulose and 0.4% ash and the protein content had increased from 5.6% to 16%. These results suggest a possible economic value of cassava peel in the production of fungal biomass and feedstock.

Résumé

Les pelures de manioc sont aisément dégradées et utilisées par une souche deRhizopus croissant en milieu solide. La croissance est maximale à 45°C et est proportionnelle au degré d'hydrolyse des pelures. Le rendement en biomasse, en poids de mycelium sec à partir des sucres réducteurs des pelures, est de 51%. Après 72 heures de fermentation, les pelures contiennent 76% d'humidité, 6% de cellulose, 7% d'hémicelluloses et 0.4% de cendres. Le contenu en protéines augmente de 5.6 à 16%. Ces résultats suggèrent une valorisation potentielle économique des pelures de manloc dans la production de biomasse et de substrat longique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Association of Official Analytical Chemists (AOAC) 1975Official Methods of Analysis, 12th ed, pp. 12–25. Washington DC: AOAC.

    Google Scholar 

  • Ben-Gera, I. &Kramer, A. 1969 The utilisation of food industries wastes.Advances in Food Research 17, 77–152.

    PubMed  Google Scholar 

  • Blanc, P., Faup, G.M. &Goma, G. 1987 Production of acetic proprionic acids from household refuse: enzymatic hydrolysate byPropionibacterium acidipropionic.Biomass 12, 49–52.

    Google Scholar 

  • El-Masry, H.G. 1983 Utilisation of Egyptian rice straw production of cellulases and microbial protein: effect of various pre-treatments on yields of protein and enzyme activity.Journal of the Science of Food and Agriculture 34, 725–732.

    Google Scholar 

  • Forage, A.J. &Righelato, R.C. 1984 Microbial protein from carbohydrate wastes.Progress in Industrial Microbiology 20, 59–94.

    Google Scholar 

  • Freyssinet, G. &Nigon, V. 1980 Growth ofEuglena gracilis on whey.European Journal of Applied Microbiology and Biotechnology 9, 295–303.

    Google Scholar 

  • Glatz, B.A., Floetenmeyer, M.D. &Hammond, E.G. 1985 Fermentation of bananas and other food wastes to produce microbial lipid.Journal of Food Protection 48, 574–577.

    Google Scholar 

  • Gregory, K.F., Reade, A.E., Khor, G.L., Alexander, J.C., Lumsden, J.H. &Losos, G. 1976 Conversion of carbohydrates to protein by high temperature fungi.Food Technology 30, 30–35.

    Google Scholar 

  • Hang, Y.D. &Woodmans, E.E. 1984 Apple pomace: a potential substrate for citric acid production byAspergillus niger.Biotechnology Letters 6, 763–764.

    Google Scholar 

  • Hang, D.F., Splittstoesser, D.F. &Woodmans, E.E. 1975 Utilisation of brewery spent grain liquor byAspergillus niger.Applied Microbiology 30, 879–880.

    PubMed  Google Scholar 

  • Han, Y.W. &Anderson, A.W. 1975 Semi-solid fermentation of rye grass straw.Applied Microbiology 30, 930–934.

    Google Scholar 

  • Hartree, E.F. 1972 Determination of protein: a modification of the Lowry method that gives a linear photometric response.Analytical Biochemistry 48, 422–427.

    PubMed  Google Scholar 

  • Kiel, H., Cuvrin, R. &Henis, Y. 1981 Citric acid fermentation byAspergillus niger on low sugar concentration and cotton waste.Applied and Environmental Microbiology 42, 1–4.

    Google Scholar 

  • Litchfield, J.H. 1977 Single-cell proteins.Food Technology 31, 175–179.

    Google Scholar 

  • Malloch, D. 1981Moulds: Their Isolation, Cultivation and Identification, p. 23–41. Toronto: University of Toronto Press.

    Google Scholar 

  • Miller, G.L. 1959 Use of dinitrosalicyclic acid reagent for determination of reducing sugar.Analytical Chemistry 31, 426–428.

    Google Scholar 

  • Mongeau, R. &Brassard, R. 1979 Determination of neutral detergent fibre, hemicellulose, cellulose, and lignin in breads.Cereal Chemistry 56, 437–444.

    Google Scholar 

  • Ofuya, C.O. & Ukpong, E. 1989 Fungal fermentation of a Nigerian brewery sludge.Biological Wastes 30, (in press).

  • Osborne, D.R. &Voogt, P. 1978The Analysis of Nutrients in Foods, pp. 107–108. London: Academic Press.

    Google Scholar 

  • Ratledge, C. 1977 Fermentation substrates.Annual Reports on Fermentation Processes,1, 49–70.

    Google Scholar 

  • Shukla, J.P. &Dutta, S.M. 1967 Production of fungal protein from waste molasses.Indian Journal of Technology 5, 27–30.

    Google Scholar 

  • Snyder, H.E. 1970 Microbial sources of protein.Advances in Food Research,18, 85–140.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ofuya, C.O., Nwajiuba, C.J. Microbial degradation and utilization of cassava peel. World J Microbiol Biotechnol 6, 144–148 (1990). https://doi.org/10.1007/BF01200933

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01200933

Keywords

Navigation