Skip to main content
Log in

Non-Hermitian Hamiltonians and stability of pure states

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We demonstrate that quantum fluctuations can cause, under certain conditions, the dynamical instability of pure states that can result in their evolution into mixed states. It is shown that the degree and type of such an instability are controlled by the environment-induced anti-Hermitian terms in Hamiltonians. Using the quantum-statistical approach for non-Hermitian Hamiltonians and related non-linear master equation, we derive the equations that are necessary to study the stability properties of any model described by a non-Hermitian Hamiltonian. It turns out that the instability of pure states is not preassigned in the evolution equation but arises as the emergent phenomenon in its solutions. In order to illustrate the general formalism and different types of instability that may occur, we perform the local stability analysis of some exactly solvable two-state models, which are being used in the theories of open quantum-optical and spin systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W. Gardiner, P. Zoller, Quantum Noise (Springer-Verlag, Berlin, 2000)

  2. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford Univ. Press, Oxford, 2002)

  3. A. Sergi, J. Chem. Phys. B 124, 024110 (2006)

    Article  ADS  Google Scholar 

  4. A. Sergi, J. Phys. A 40, F347 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. J.P. Paz, S. Habib, W.H. Zurek, Phys. Rev. D 47, 488 (1993)

    Article  ADS  Google Scholar 

  6. Physical Origins of Time Asymmetry, edited by J.J. Halliwell, J. Pèrez-Mercader, W.H. Zurek (Cambridge Univ. Press, 1996)

  7. A. Sergi, K.G. Zloshchastiev, Int. J. Mod. Phys. B 27, 1350163 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  8. D.C. Brody, E.-M. Graefe, Phys. Rev. Lett. 109, 230405 (2012)

    Article  ADS  Google Scholar 

  9. N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge Univ. Press, Cambridge, 2011)

  10. H. Suura, Prog. Theor. Phys. 12, 49 (1954)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. J. Korringa, Phys. Rev. 133, 1228 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  12. J. Wong, J. Math. Phys. 8, 2039 (1967)

    Article  ADS  Google Scholar 

  13. G.C. Hegerfeldt, Phys. Rev. A 47, 449 (1993)

    Article  ADS  Google Scholar 

  14. S. Baskoutas, A. Jannussis, R. Mignani, V. Papatheou, J. Phys. A 26, L819 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  15. I. Rotter, J. Phys. A 42, 153001 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  16. F. Reiter, A.S. Sørensen, Phys. Rev. A 85, 032111 (2012)

    Article  ADS  Google Scholar 

  17. E. Karakaya, F. Altintas, K. Güven, Ö. E. Müstecaplıoğlu, Eur. Phys. Lett. 105, 40001 (2014)

    Article  ADS  Google Scholar 

  18. K.G. Zloshchastiev, A. Sergi, J. Mod. Opt. 61, 1298 (2014)

    Article  ADS  Google Scholar 

  19. A. Sergi, K.G. Zloshchastiev, Phys. Rev. A 91, 062108 (2015)

    Article  ADS  Google Scholar 

  20. A. Sergi, Theor. Chem. Acc. 134, 79 (2015)

    Article  Google Scholar 

  21. A. Sergi, K.G. Zloshchastiev, arXiv:1502.07086

  22. G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. D.A. Lidar, A. Shabani, R. Alicki, Chem. Phys. 322, 82 (2006)

    Article  ADS  Google Scholar 

  24. M. Znojil, J. Nonlin. Math. Phys. 9, 122 (2002)

    Article  MathSciNet  Google Scholar 

  25. H. Feshbach, Ann. Phys. 5, 357 (1958)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. B.V. Chirikov, Phys. Rep. 52, 263 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  27. G.M. Zaslavsky, Phys. Rep. 80, 157 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Berry, Quantum Chaology, in Quantum: a guide for the perplexed, edited by J. Al-Khalili (Weidenfeld and Nicolson, 2003)

  29. W.H. Zurek, S. Habib, J.P. Paz, Phys. Rev. Lett. 70, 1187 (1993)

    Article  ADS  Google Scholar 

  30. P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, G. Vattay, Chaos: Classical and Quantum (Niels Bohr Institute, Copenhagen, 2003)

  31. G. Dattoli, A. Torre, R. Mignani, Phys. Rev. A 42, 1467 (1990)

    Article  ADS  Google Scholar 

  32. A.J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987)

    Article  ADS  Google Scholar 

  33. F.G. Scholtz, H.B. Geyer, F.J.W. Hahne, Ann. Phys. 213, 74 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zloshchastiev, K.G. Non-Hermitian Hamiltonians and stability of pure states. Eur. Phys. J. D 69, 253 (2015). https://doi.org/10.1140/epjd/e2015-60384-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60384-0

Keywords

Navigation