Skip to main content
Log in

The distribution and phosphorylation of the microtubule-associated protein MAP 1B in growth cones

  • Published:
Journal of Neurocytology

Summary

Primary cultures of dissociated embryonic day 18 rat cerebral cortices were labelled by immunofluorescence with antibodies directed either against phosphorylated and non-phosphorylated MAP 1B (antibody 81) or against phosphorylated MAP 1B (antibody 150). Both antibodies stain cortical neurons, including their neurites and growth cones, in early (18 h) cultures, whereas only antibody 81 stained glial cells. By 4 days in culture, phosphorylated MAP 1B is largely restricted to axonal processes and growth cones, where it is often distributed in a gradient that is highest distally. In axonal processes and growth cones after 18 h and 4 days in culture, the phosphorylated form of MAP 1B is present both in a soluble form and bound to microtubules. Growth cones isolated from postnatal day 5 rat forebrain were labelledin vitro with32P-orthophosphate and detergent soluble and insoluble (cytoskeleton) fractions prepared. SDS-PAGE analysis revealed several major phosphoproteins in isolated growth cone cytoskeletons, including MAP 1B. Phosphorylated MAP 1B was also present in the detergent soluble fraction of growth cones. Immunoblotting and immunoprecipitation with MAP 1B antibodies confirmed the identification of MAP 1B and that the protein is phosphorylated in growth cones. These data show that MAP 1B, in particular the phosphorylated isoform, is present in growth cones and suggest that phosphorylation of MAP 1B may play an important role in neurite elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aletta, J. M., Lewis, S. A., Cowan, N. J. &Greene, L. A. (1988) Nerve growth factor regulates both the phosphorylation and steady-state levels of microtubule associated protein 1.2 (MAP 1.2).Journal of Cell Biology 106, 1573–81.

    Google Scholar 

  • Asai, D. J., Thompson, W. C., Wilson, L., Dresden, C. F., Schulman, H. &Purich, D. L. (1985). Microtubule associated proteins (MAPs): a monoclonal antibody to MAP 1 decorates microtubulesin vitro but stains stress fibres and not microtubulesin vivo.Proceedings of the National Academy of Science (USA) 82, 1434–8.

    Google Scholar 

  • Baas, P. W., White, L. A. &Heidemann, S. R. (1987) Microtubule polarity reversal accompanies regrowth of amputated neurites.Proceedings of the National Academy of Science (USA) 84, 5272–6.

    Google Scholar 

  • Bamburg, J. R., Bray, D. &Chapman, K. (1986) Assembly of microtubules at the tip of growing axons.Nature 321, 788–90.

    PubMed  Google Scholar 

  • Bartlett, W. P. &Banker, G. A. (1984) An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture I. Cells which develop without intercellular contacts.Journal of Neuroscience 4, 1944–53.

    PubMed  Google Scholar 

  • Bloom, G. S., Luca, F. C. &Vallee, R. B. (1985a) Identification of high molecular weight microtubule associated proteins in anterior pituitary tissue and cells using taxol dependent purification combined with microtubule associated protein specific antibodies.Biochemistry 24, 4185–91.

    PubMed  Google Scholar 

  • Bloom, G. S., Luca, F. C. &Vallee, R. B. (1985b) Microtubule associated protein 1B: identification of a major component of the neuronal cytoskeleton.Proceedings of the National Academy of Science (USA) 82, 5404–8.

    Google Scholar 

  • Bloom, G. S., Schoenfield, T. A. &Vallee, R. B. (1984) Widespread distribution of the major polypeptide component of MAP 1 (Microtubule associated protein 1) in the nervous system.Journal of Cell Biology 98, 320–30.

    PubMed  Google Scholar 

  • Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding.Analytical Biochemistry 72, 248–54.

    PubMed  Google Scholar 

  • Brugg, B. &Matus, A. (1988) PC12 cells express juvenile microtubule-associated proteins during nerve factorinduced neurite outgrowth.Journal of Cell Biology 107, 643–50.

    Google Scholar 

  • Calvert, R. &Anderton, B. H. (1985) A microtubule associated protein MAP 1 which is expressed at elevated levels during development of rat cerebellum.EMBO Journal 4, 1171–6.

    PubMed  Google Scholar 

  • Daniels, M. (1972) Colchicine inhibition of nerve fiber formationin vitro.Journal of Cell Biology 53, 164–76.

    Google Scholar 

  • Diaz-Nido, J., Armas-Potela, R., Martinez, A., Rocha, M. &Avila, J. (1991) Role of microtubules in neurite outgrowth. InThe Nerve Growth Cone (edited byKater, S. B., Letourneau, P. C. &Macagno, E. R.) New York: Raven Press, in press.

    Google Scholar 

  • Diaz-Nido, J. &Avila, J. (1989) Characterization of proteins immunologically related to brain microtubule associated protein MAP 1B in non-neuronal cells.Journal of Cell Science 92, 607–20.

    PubMed  Google Scholar 

  • Diaz-Nido, J., Serrano, L., Hernandez, M. A. &Avila, J. (1990) Phosphorylation of microtubule proteins in rat brain at different developmental stages: comparison with that found in neural cultures.Journal of Neurochemistry 54, 211–22.

    PubMed  Google Scholar 

  • Diaz-Nido, J., Serrano, L., Mendez, E. &Avila, J. (1988) A casein kinase II-related activity is involved in phosphorylation of microtubule associated protein MAP 1B during neuroblastoma cell differentiation.Journal of Cell Biology 106, 2057–65.

    Google Scholar 

  • Dodd, J. &Jessell, T. M. (1988) Axonal guidance and the patterning of neuronal projections in vertebrates.Science 242, 692–9.

    PubMed  Google Scholar 

  • Drubin, D. G., Feinstein, S., Shooter, E. &Kirschner, M. (1985) Nerve growth factor induced outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly promoting factors.Journal of Cell Biology 101, 1799–1807.

    Google Scholar 

  • Fairbanks, G., Steck, N. C. &Wallach, D. F. (1981) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane.Biochemistry 10, 2606–17.

    Google Scholar 

  • Fischer, I. &Romano-Clarke, G. (1990). Changes in microtubule-associated protein MAP 1B phosphorylation during rat brain development.Journal of Neurochemistry 55, 328–33.

    PubMed  Google Scholar 

  • Fried, R. C. &Blaustein, M. P. (1978) Retrieval and recycling of synaptic vesicle membrane in pinched-off nerve terminals (synaptosomes).Journal of Cell Biology 78, 685–700.

    PubMed  Google Scholar 

  • Gard, D. L. &Kirschner, M. W. (1985) A polymerdependent increase in phosphorylation of β-tubulin accompanies differentiation of a neuroblastoma cell line.Journal of Cell Biology 100, 764–74.

    PubMed  Google Scholar 

  • Garner, C. C., Garner, A., Huber, G., Kozak, C. &Matus, A. (1990) Molecular cloning of MAP 1 (MAP 1A) and MAP 5 (MAP 1B): identification of distinct genes and their differential expression in developing brain.Journal of Neurochemistry 55, 146–54.

    PubMed  Google Scholar 

  • Garner, C. C., Matus, A., Anderton, B. &Calvert, R. (1989) Microtubule-associated proteins MAP 5 and MAP 1x: closely related components of the neuronal cytoskeleton with different cytoplasmic distribution in the developing brain.Molecular Brain Research 5, 85–92.

    PubMed  Google Scholar 

  • Girault, J. A., Hemmings, H. C. Jr., Williams, K. R., Nairn, A. C. &Greengard, P. (1989) Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein by casein kinase II.Journal of Biological Chemisfry 264, 21748–59.

    Google Scholar 

  • Girault, J. A., Hemmings, H. C. Jr., Zorn, S. H., Gustafson, E. L. &Greengard, P. (1990) Characterization in mammalian brain of a DARPP-32 serine kinase identical to casein kinase II.Journal of Neurochemistry 55, 1772–83.

    PubMed  Google Scholar 

  • Gogstad, G. O. &Krutnes, M. -B. (1982) Measurement of protein in cell suspensions using the Coomassie Brilliant Blue dye-binding assay.Analytical Biochemistry 126, 355–9.

    PubMed  Google Scholar 

  • Gordon-Weeks, P. R. (1987) The cytoskeletons of isolated, neuronal growth cones.Neuroscience 21, 977–89.

    PubMed  Google Scholar 

  • Gordon-Weeks, P. R. (1991) Growth cones: the mechanism of neurite advance.BioEssays 13, 235–9.

    PubMed  Google Scholar 

  • Gordon-Weeks, P. R. &Lang, R. D. A. (1988) The α-tubulin of the growth cone is predominantly in the tyrosinated form.Developmental Brain Research 42, 156–60.

    Google Scholar 

  • Gordon-Weeks, P. R. &Lockerbie, R. O. (1984) Isolation and partial characterization of neuronal growth cones from neonatal rat forebrain.Neuroscience 13, 119–36.

    PubMed  Google Scholar 

  • Gordon-Weeks, P. R. &Mansfield, S. G. (1991) The assembly of microtubules in growth cones: the role of microtubule-associated proteins. InThe Nerve Growth Cone (edited byKater, S. B., Letourneau, P. C. &Macagno, E. R.). New York: Raven Press, in press.

    Google Scholar 

  • Gordon-Weeks, P. R., Mansfield, S. G. &Curran, I. (1989) Direct visualization of the soluble pool of tubulin in the neuronal growth cone: immunofluorescence studies following taxol polymerisation.Developmental Brain Research 49, 305–10.

    PubMed  Google Scholar 

  • Goslin, K., Schreyer, D. J., Skene, J. H. P. &Banker, G. A. (1988) Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones.Nature 336, 672–4.

    PubMed  Google Scholar 

  • Greene, L. A., Liem, R. K. H. &Shelanski, M. L. (1983) Regulation of a high molecular weight microtubule associated protein in PC12 cells by nerve growth factor.Journal of Cell Biology 96, 76–83.

    Google Scholar 

  • Gundersen, G. G., Kalnoski, M. H. &Bulinski, J. C. (1984) Distinct populations of microtubules: tyrosinated and nontyrosinated alpha-tubulins are distributed differently in vivo.Cell 38, 779–89.

    PubMed  Google Scholar 

  • Hasegawa, M., Arai, T. &Ihara, Y. (1990) Immunochemical evidence that fragments of phosphorylated MAP5 (MAP 1B) are bound to neurofibrillary tangles in Alzheimer's disease.Neuron 4, 909–18.

    PubMed  Google Scholar 

  • Hoshi, M., Nishida, E., Inagaki, M., Gotoh, Y. &Sakai, H. (1990) Activation of a serine/-threonine kinase that phosphorylates microtubule-associated protein 1Bin vitro by growth factors and phorbol esters in quiescent rat fibroblastic cells.European Journal of Biochemistry 193, 513–19.

    PubMed  Google Scholar 

  • Iimoto, D. S., Masliah, E., Deteresa, R., Terry, R. D. &Saitoh, T. (1989) Aberrant casein kinase II in Alzheimer's disease.Brain Research 507, 273–80.

    Google Scholar 

  • Kilmartin, J. V., Wright, B. &Milstein, C. (1982) Rat monoclonal antitubulin antibodies derived using a new non-secreting rat cell line.Journal of Cell Biology 93, 576–82.

    PubMed  Google Scholar 

  • Kuznetsov, S. A., &Gelfand, V. I. (1987) 18kDa microtubule associated protein: identification as a new light chain (LC-3) of microtubule associated protein 1 (MAP 1).FEBS Letters 212, 145–8.

    PubMed  Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680–5.

    PubMed  Google Scholar 

  • Letourneau, P. C. &Ressler, A. H. (1984) Inhibition of neurite initiation and growth by taxol.Journal of Cell Biology 98, 1355–62.

    Google Scholar 

  • Levi, G., Aloisi, F., Ciotti, M. T. &Gallo, V. (1984) Autoradiographic localisation and depolarisation-induced release of acidic amino acids in differentiating cerebellar granule cell cultures.Brain Research 290, 77–86.

    PubMed  Google Scholar 

  • Lindwall, G. &Cole, R. D. (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly.Journal of Cell Biological Chemistry 259, 5301–5.

    Google Scholar 

  • Lockerbie, R. O. (1987) The neuronal growth cone: a review of its locomotory, navigational and target recognition capabilities.Neuroscience 20, 719–29.

    PubMed  Google Scholar 

  • Mansfield, S. G. &Gordon-Weeks, P. R. (1990) Post-translational modification of tubulin in rat cerebral cortical neurons extending neurites in culture: effects of taxol.Journal of Physiology 426, 118P.

    Google Scholar 

  • Mansfield, S. G. &Gordon-Weeks, P. R. (1991) Dynamic post-translational modification of tubulin in rat cerebral cortical neurons extending neurites in culture: effects of taxol.Journal of Neurocytology 20, 654–66.

    Google Scholar 

  • Matus, A. (1988) Microtubule-associated proteins: their potential role in determining neuronal morphology.Annual Review of Neuroscience 11, 29–44.

    PubMed  Google Scholar 

  • Meiri, K. &Gordon-Weeks, P. R. (1990) GAP-43 in growth cones is associated with areas of membrane that are tightly bound to substrate, and is a component of a membrane skeleton subcellular fraction.Journal of Neuroscience 10, 256–66.

    PubMed  Google Scholar 

  • Murthy, A. &Flavin, M. (1983) Microtubule assembly using the microtubule associated protein MAP 2 prepared in defined states of phosphorylation with protein kinase and phosphatase.European Journal of Biochemistry 137, 37–46.

    PubMed  Google Scholar 

  • Noble, M., Lewis, S. A. &Cowan, N. J. (1989) The microtubule binding domain of microtubule associated protein MAP 1B contains a repeated sequence motif unrelated to that of MAP 2 and tau.Journal of Cell Biology 109, 3367–76.

    PubMed  Google Scholar 

  • Olmsted, J. B. (1986) Microtubule-associated proteins.Annual Review of Neuroscience 11, 29–44.

    Google Scholar 

  • Pfenninger, K. H., Ellis, L., Johnson, M. P., Friedman, L. B., &Somlo, S. (1983) Nerve growth cones isolated from fetal rat brain. Subcellular fractionation and characterization.Cell 35, 573–84.

    PubMed  Google Scholar 

  • Pisano, M. R., Hegazy, M. G., Reimann, E. M. &Lokas, L. A. (1988) Phosphorylation of protein B-50 (GAP-43) from adult rat brain cortex by casein kinase II.Biochemical and Biophysical Research Communications 155, 1207–1212.

    PubMed  Google Scholar 

  • Ramón Y Cajal, S. (1890) A quelle époque apparaissent les expensions des cellules nerveuses de la môlle épinière du populet?Anatomischer Anzeiger 21, 609–13, 631–9.

    Google Scholar 

  • Read, S. M. &Northcote, D. H. (1981) Minimisation of variation in the response to different proteins of the Coomassie Blue G dye-binding assay for protein.Analytical Biochemistry 116, 53–64.

    PubMed  Google Scholar 

  • Riederer, B., Cohen, R. &Matus, A. (1986) MAP 5: a novel microtubule associated protein under strong developmental regulation.Journal of Neurocytology 15, 763–75.

    Google Scholar 

  • Riederer, B. M., Guadano-Ferraz, A. &Innocenti, G. M. (1990) Difference in distribution of microtubule-associated proteins 5a and 5b during the development of cerebral cortex and corpus callosum in cats: dependence on phosphorylation.Developmental Brain Research 56, 235–43.

    PubMed  Google Scholar 

  • Sargent, P. B. (1990) What distinguishes axons from dendrites? Neurons know more than we do.Trends in Neuroscience 12, 203–5.

    Google Scholar 

  • Sato-Yoshitake, R., Shiomura, Y., Miyasaka, H. &Hirokawa, N. (1989) Microtubule associated protein 1B: molecular structure, localization and phosphorylation-dependent expression in developing neurons.Neuron 3, 229–38.

    PubMed  Google Scholar 

  • Schiff, P. B., Fant, J. &Howitz, S. B. (1979) Promotion of microtubule assemblyin vitro by taxol.Nature 277, 665–7.

    PubMed  Google Scholar 

  • Schoenfeld, J. A., Mckerracher, L., Obar, R. &Vallee, R. B. (1989) MAP 1A and MAP 1B are structurally related microtubule associated proteins with distinct developmental patterns in the CNS.Journal of Neuroscience 9, 1712–30.

    PubMed  Google Scholar 

  • Serrano, L., Hernandez, M. A., Diaz-Nido, J. &Avila, J. (1989) Association of casein kinase II with microtubules.Experimental Cell Research 181, 263–72.

    PubMed  Google Scholar 

  • Tsao, H., Aletta, J. M. &Greene, L. A. (1990) Nerve Growth Factor and Fibroblast Growth Factor selectively activate a protein kinase that phosphorylates high molecular weight microtubule-associated proteins.Journal of Biological Chemistry 265, 15471–80.

    PubMed  Google Scholar 

  • Viereck, C. &Matus, A. (1990) The expression of phosphorylated and non-phosphorylated forms of MAP 5 in the amphibian CNS.Brain Research 508, 257–64.

    PubMed  Google Scholar 

  • Viereck, C., Tucker, R. P. &Matus, A. (1989) The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain.Journal of Neuroscience 9, 3547–57.

    Google Scholar 

  • Wiche, G., Oberkanins, C. &Himmler, A. (1991) Molecular structure and function of microtubule-associated proteins.International Review of Cytology 124, 217–73.

    PubMed  Google Scholar 

  • Yamada, K. M., Spooner, B. S. &Wessells, N. K. (1970) Axon growth: roles of microfilaments and microtubules.Proceedings of the National Academy of Science (USA) 66, 1206–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansfield, S.G., Diaz-Nido, J., Gordon-Weeks, P.R. et al. The distribution and phosphorylation of the microtubule-associated protein MAP 1B in growth cones. J Neurocytol 20, 1007–1022 (1991). https://doi.org/10.1007/BF01187918

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01187918

Keywords

Navigation