Skip to main content

Phosphorylation of Drebrin and Its Role in Neuritogenesis

  • Chapter
  • First Online:
Drebrin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1006))

Abstract

Neuritogenesis is an early event in neuronal development in which newborn neurons first form growth cones, as a prerequisite for the formation of axons and dendrites. Growth cones emerge from segmented regions of the lamellipodium of embryonic neurons and grow away from the cell body leaving behind a neurite that will eventually polarise into an axon or dendrite. Growth cones also function to navigate precise routes through the embryo to locate an appropriate synaptic partner. Dynamic interactions between two components of the neuronal cytoskeleton, actin filaments and microtubules, are known to be essential for growth cone formation and hence neuritogenesis. The molecular mechanisms that coordinate interactions between actin filaments and dynamic microtubules during neuritogenesis are beginning to be understood. One candidate pathway coupling actin filaments to microtubules consists of the actin filament-binding protein drebrin and the microtubule-binding +TIP protein EB3. This pathway is regulated proximally by cyclin-dependent kinase 5 phosphorylation of drebrin but the upstream elements in the pathway have yet to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • de Anda FC, Pollarolo G, Da Silva JS, Camoletto PG, Feiguin F, Dotti CG (2005) Centrosome localization determines neuronal polarity. Nature 436(7051):704–708. doi:10.1038/nature03811

    Article  PubMed  Google Scholar 

  • Ballif BA, Villen J, Beausoleil SA, Schwartz D, Gygi SP (2004) Phosphoproteomic analysis of the developing mouse brain. Mol Cell Proteomics 3(11):1093–1101. doi:10.1074/mcp.M400085-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Bazellieres E, Massey-Harroche D, Barthelemy-Requin M, Richard F, Arsanto JP, Le Bivic A (2012) Apico-basal elongation requires a drebrin-E-EB3 complex in columnar human epithelial cells. J Cell Sci 125(Pt 4):919–931. doi:10.1242/jcs.092676

    Article  CAS  PubMed  Google Scholar 

  • Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, Cohn MA, Cantley LC, Gygi SP (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101(33):12130–12135. doi:10.1073/pnas.0404720101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradke F, Fawcett JW, Spira ME (2012) Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat Rev Neurosci 13(3):183–193. doi:10.1038/nrn3176

    CAS  PubMed  Google Scholar 

  • Chen TH, Chan PC, Chen CL, Chen HC (2011) Phosphorylation of focal adhesion kinase on tyrosine 194 by Met leads to its activation through relief of autoinhibition. Oncogene 30(2):153–166. doi:10.1038/onc.2010.398

    Article  PubMed  Google Scholar 

  • Chew CS, Okamoto CT, Chen X, Thomas R (2005) Drebrin E2 is differentially expressed and phosphorylated in parietal cells in the gastric mucosa. Am J Physiol Gastrointest Liver Physiol 289(2):G320–G331. doi:10.1152/ajpgi.00002.2005

    Article  CAS  PubMed  Google Scholar 

  • Coles CH, Bradke F (2015) Coordinating neuronal actin-microtubule dynamics. Curr Biol 25(15):R677–R691. doi:10.1016/j.cub.2015.06.020

    Article  CAS  PubMed  Google Scholar 

  • Collins MO, Yu L, Coba MP, Husi H, Campuzano I, Blackstock WP, Choudhary JS, Grant SG (2005) Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem 280(7):5972–5982. doi:10.1074/jbc.M411220200

  • Collins MO, Yu L, Campuzano I, Grant SG, Choudhary JS (2008) Phosphoproteomic analysis of the mouse brain cytosol reveals a predominance of protein phosphorylation in regions of intrinsic sequence disorder. Mol Cell Proteomics 7(7):1331–1348. doi:10.1074/mcp.M700564-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Dehmelt L, Smart FM, Ozer RS, Halpain S (2003) The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J Neurosci 23(29):9479–9490

    CAS  PubMed  Google Scholar 

  • Dent EW, Kwiatkowski AV, Mebane LM, Philippar U, Barzik M, Rubinson DA, Gupton S, Van Veen JE, Furman C, Zhang J, Alberts AS, Mori S, Gertler FB (2007) Filopodia are required for cortical neurite initiation. Nat Cell Biol 9(12):1347–1359. doi:10.1038/ncb1654

    Article  CAS  PubMed  Google Scholar 

  • Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 105(31):10762–10767. doi:10.1073/pnas.0805139105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8(4):1454–1468

    CAS  PubMed  Google Scholar 

  • Flynn KC (2013) The cytoskeleton and neurite initiation. BioArchitecture 3(4):86–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Flynn KC, Hellal F, Neukirchen D, Jacob S, Tahirovic S, Dupraz S, Stern S, Garvalov BK, Gurniak C, Shaw AE, Meyn L, Wedlich-Soldner R, Bamburg JR, Small JV, Witke W, Bradke F (2012) ADF/cofilin-mediated actin retrograde flow directs neurite formation in the developing brain. Neuron 76(6):1091–1107. doi:10.1016/j.neuron.2012.09.038

    Article  CAS  PubMed  Google Scholar 

  • Gärtner A, Fornasiero EF, Munck S, Vennekens K, Seuntjens E, Huttner WB, Valtorta F, Dotti CG (2012) N-cadherin specifies first asymmetry in developing neurons. EMBO J 31(8):1893–1903. doi:10.1038/emboj.2012.41

    Article  PubMed  PubMed Central  Google Scholar 

  • Gärtner A, Fornasiero EF, Dotti CG (2015) Cadherins as regulators of neuronal polarity. Cell Adhes Migr 9(3):175–182. doi:10.4161/19336918.2014.983808

    Article  Google Scholar 

  • Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJR, Mohammed S (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81(11):4493–4501. doi:10.1021/ac9004309

    Article  CAS  PubMed  Google Scholar 

  • Geraldo S, Khanzada UK, Parsons M, Chilton JK, Gordon-Weeks PR (2008) Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nat Cell Biol 10(10):1181–1189. doi:10.1038/ncb1778

    Article  CAS  PubMed  Google Scholar 

  • Gordon-Weeks PR (2005) Neuronal growth cones, Developmental and cell biology series, vol 37. Cambridge University Press, Cambridge

    Google Scholar 

  • Grönborg M, Kristiansen TZ, Stensballe A, Andersen JS, Ohara O, Mann M, Jensen ON, Pandey A (2002) A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics 1(7):517–527

    Article  PubMed  Google Scholar 

  • Guo M, Galan J, Tao WA (2007) Soluble nanopolymer-based phosphoproteomics for studying protein phosphatase. Methods 42(3):289–297. doi:10.1016/j.ymeth.2007.02.019

    Article  CAS  PubMed  Google Scholar 

  • Kreis P, Hendricusdottir R, Kay L, Papageorgiou IE, van Diepen M, Mack T, Ryves J, Harwood A, Leslie NR, Kann O, Parsons M, Eickholt BJ (2013) Phosphorylation of the actin binding protein Drebrin at S647 is regulated by neuronal activity and PTEN. PLoS One 8(8):e71957. doi:10.1371/journal.pone.0071957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwiatkowski AV, Rubinson DA, Dent EW, Edward van Veen J, Leslie JD, Zhang J, Mebane LM, Philippar U, Pinheiro EM, Burds AA, Bronson RT, Mori S, Fassler R, Gertler FB (2007) Ena/VASP Is Required for neuritogenesis in the developing cortex. Neuron 56(3):441–455. doi:10.1016/j.neuron.2007.09.008

    Article  CAS  PubMed  Google Scholar 

  • Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu LF, Eng JK, Rodionov V, Han DK (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2(84):ra46. doi:10.1126/scisignal.2000007

    Article  PubMed  Google Scholar 

  • Merriam EB, Millette M, Lumbard DC, Saengsawang W, Fothergill T, Hu X, Ferhat L, Dent EW (2013) Synaptic regulation of microtubule dynamics in dendritic spines by calcium, F-actin, and drebrin. J Neurosci 33(42):16471–16482. doi:10.1523/JNEUROSCI.0661-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizui T, Kojima N, Yamazaki H, Katayama M, Hanamura K, Shirao T (2009) Drebrin E is involved in the regulation of axonal growth through actin-myosin interactions. J Neurochem 109(2):611–622. doi:10.1111/j.1471-4159.2009.05993.x

    Article  CAS  PubMed  Google Scholar 

  • Molina H, Horn DM, Tang N, Mathivanan S, Pandey A (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 104(7):2199–2204. doi:10.1073/pnas.0611217104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherji M, Brill LM, Ficarro SB, Hampton GM, Schultz PG (2006) A phosphoproteomic analysis of the ErbB2 receptor tyrosine kinase signaling pathways. Biochemistry 45(51):15529–15540. doi:10.1021/bi060971c

    Article  CAS  PubMed  Google Scholar 

  • Munton RP, Tweedie-Cullen R, Livingstone-Zatchej M, Weinandy F, Waidelich M, Longo D, Gehrig P, Potthast F, Rutishauser D, Gerrits B, Panse C, Schlapbach R, Mansuy IM (2007) Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations. Mol Cell Proteomics 6(2):283–293. doi:10.1074/mcp.M600046-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648. doi:10.1016/j.cell.2006.09.026

  • Polleux F, Snider W (2010) Initiating and growing an axon. Cold Spring Harb Perspect Biol 2(4):a001925. doi:10.1101/cshperspect.a001925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23(1):94–101. doi:10.1038/nbt1046

    Article  CAS  PubMed  Google Scholar 

  • Smith CL (1994a) Cytoskeletal movements and substrate interactions during initiation of neurite outgrowth by sympathetic neurons in vitro. J Neurosci 14(1):384–398

    Google Scholar 

  • Smith CL (1994b) The initiation of neurite outgrowth by sympathetic neurons grown in vitro does not depend on assembly of microtubules. J Cell Biol 127(5):1407–1418

    Google Scholar 

  • Sonego M, Oberoi M, Stoddart J, Gajendra S, Hendricusdottir R, Oozeer F, Worth DC, Hobbs C, Eickholt BJ, Gordon-Weeks PR, Doherty P, Lalli G (2015) Drebrin regulates neuroblast migration in the postnatal mammalian brain. PLoS One 10(5):e0126478. doi:10.1371/journal.pone.0126478

    Article  PubMed  PubMed Central  Google Scholar 

  • Su SC, Tsai LH (2011) Cyclin-dependent kinases in brain development and disease. Annu Rev Cell Dev Biol 27:465–491. doi:10.1146/annurev-cellbio-092910-154023

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama N, Masuda T, Shinoda K, Nakamura A, Tomita M, Ishihama Y (2007) Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6(6):1103–1109. doi:10.1074/mcp.T600060-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Takeya R, Taniguchi K, Narumiya S, Sumimoto H (2008) The mammalian formin FHOD1 is activated through phosphorylation by ROCK and mediates thrombin-induced stress fibre formation in endothelial cells. EMBO J 27(4):618–628. doi:10.1038/emboj.2008.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe K, Yamazaki H, Inaguma Y, Asada A, Kimura T, Takahashi J, Taoka M, Ohshima T, Furuichi T, Isobe T, Nagata K, Shirao T, Hisanaga S (2014) Phosphorylation of drebrin by cyclin-dependent kinase 5 and its role in neuronal migration. PLoS One 9(3):e92291. doi:10.1371/journal.pone.0092291

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao WA, Wollscheid B, O'Brien R, Eng JK, Li XJ, Bodenmiller B, Watts JD, Hood L, Aebersold R (2005) Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nat Methods 2(8):591–598. doi:10.1038/Nmeth776

    Article  CAS  PubMed  Google Scholar 

  • Torres E, Rosen MK (2006) Protein-tyrosine kinase and GTPase signals cooperate to phosphorylate and activate Wiskott–Aldrich syndrome protein (WASP)/neuronal WASP. J Biol Chem 281(6):3513–3520. doi:10.1074/jbc.M509416200

    Article  CAS  PubMed  Google Scholar 

  • Trinidad JC, Specht CG, Thalhammer A, Schoepfer R, Burlingame AL (2006) Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol Cell Proteomics 5(5):914–922. doi:10.1074/mcp.T500041-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Trinidad JC, Thalhammer A, Specht CG, Baker PR, Lynn AJ, Schoepfer R, Burlingame AL (2007) Analysis of protein levels and phosphorylation stoichiometry from complex samples using the iTRAQ reagent. Mol Cell Proteomics 6(8):17–17

    Google Scholar 

  • Trinidad JC, Thalhammer A, Specht CG, Lynn AJ, Baker PR, Schoepfer R, Burlingame AL (2008) Quantitative analysis of synaptic phosphorylation and protein expression. Mol Cell Proteomics 7(4):684–696. doi:10.1074/mcp.M700170-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Vosseller K, Hansen KC, Chalkley RJ, Trinidad JC, Wells L, Hart GW, Burlingame AL (2005) Quantitative analysis of both protein expression and serine/threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics 5(2):388–398. doi:10.1002/pmic.200401066

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ding SJ, Wang W, Jacobs JM, Qian WJ, Moore RJ, Yang F, Camp DG, 2nd, , Smith RD, Klemke RL (2007) Profiling signaling polarity in chemotactic cells. Proc Natl Acad Sci USA 104 (20):8328-8333. doi:10.1073/pnas.0701103104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worth DC, Daly CN, Geraldo S, Oozeer F, Gordon-Weeks PR (2013) Drebrin contains a cryptic F-actin-bundling activity regulated by Cdk5 phosphorylation. J Cell Biol 202(5):793–806. doi:10.1083/jcb.201303005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahedi RP, Lewandrowski U, Wiesner J, Wortelkamp S, Moebius J, Schutz C, Walter U, Gambaryan S, Sickmann A (2008) Phosphoproteome of resting human platelets. J Proteome Res 7(2):526–534. doi:10.1021/pr0704130

    Article  CAS  PubMed  Google Scholar 

  • Zheng HY, Hu P, Quinn DF, Wang YK (2005) Phosphotyrosine proteomic study of interferon alpha signaling pathway using a combination of immunoprecipitation and immobilized metal affinity chromatography. Mol Cell Proteomics 4(6):721–730. doi:10.1074/mcp.M400077-MCP200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip R. Gordon-Weeks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Gordon-Weeks, P.R. (2017). Phosphorylation of Drebrin and Its Role in Neuritogenesis. In: Shirao, T., Sekino, Y. (eds) Drebrin. Advances in Experimental Medicine and Biology, vol 1006. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56550-5_4

Download citation

Publish with us

Policies and ethics