Skip to main content
Log in

Discontinuous bifurcations in the case of the Burzyński-Torre yield condition

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Material instability resulting in discontinuous plastic bifurcations was considered in numerous papers for typical yield conditions. Here we discuss this phenomenon for the paraboloidal Burzyński-Torre yield condition, adequate for many brittle plastic materials. This condition is described by a function which is not homogeneous with respect to the stress components and this fact brings some additional difficulties. General formulae are derived and then plane stress states are discussed in detail. Related decohesion phenomena are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill, R.: A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids6, 236–249 (1958).

    Google Scholar 

  2. Rudnicki, J. W., Rice, J. R.: Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids23, 371–394 (1975).

    Google Scholar 

  3. Rice, J. R.: The localization of plastic deformation. In: Proc. 14th IUTAM Congr. Delft (Koiter, W. T., ed.), pp. 207–220. Amsterdam: North Holland 1976.

    Google Scholar 

  4. Ottosen, N. S., Runesson, K.: Properties of discontinuous bifurcation solutions in elasto-plasticity. Int. J. Solids Struct.27, 401–421 (1991).

    Google Scholar 

  5. Runesson, K., Ottosen, N. S., Perić, D.: Discontinuous bifurcations of elastic-plastic solutions at plane stress and plane strain. Int. J. Plasticity7, 99–121 (1991).

    Google Scholar 

  6. Tomita, Y.: Simulations of plastic instabilities in solid mechanics. Appl. Mech. Rev.47, 171–205 (1994).

    Google Scholar 

  7. Thomas, T. Y.: Plastic flow and fracture in solids. New York: Academic Press 1961.

    Google Scholar 

  8. Schreyer, H. L., Zhou, S.: A unified approach for predicting material failure and decohesion. In: Plastic and fracture instabilities in materials (Ghoniem, N., ed.), AMD-Vol. 200/MD-Vol. 57, pp. 203–214. New York: ASME 1995.

    Google Scholar 

  9. Życzkowski, M.: Combined loadings in the theory of plasticity. Warszawa and Alphen aan den Rijn: PWN and Nijhoff 1981.

    Google Scholar 

  10. Clift, S. E., Hartley, P., Sturgess, C. E. N., Rowe, G. W.: Fracture prediction in plastic deformation processes. Int. J. Mech. Sci.32, 1–17 (1990).

    Google Scholar 

  11. Needleman, A.: Computation modeling of material failure. Appl. Mech. Rev.47, 34–42 (1994).

    Google Scholar 

  12. Szuwalski, K., Życzkowski, M.: On the phenomenon of decohesion in perfect plasticity. Int. J. Solids Struct.9, 85–98 (1973).

    Google Scholar 

  13. Szuwalski, K.: Decohesive carrying capacity in perfect and asymptotically perfect plasticity (a survey). Mech. Teor. Stos.28, 243–253 (1990).

    Google Scholar 

  14. Needleman, A.: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech.54, 525–531 (1987).

    Google Scholar 

  15. Mróz, Z., Kowalczyk, M.: Elasto-plastic post-critical analysis of disks under tension. Arch. Mech. Stos.41, 461–480 (1989).

    Google Scholar 

  16. Skrzypek, J.: Plasticity and creep, theory, examples, and problems. Boca Raton: CRC Press (1993).

    Google Scholar 

  17. Lode, W.: Versuche über den Einfluß der mittleren Hauptspannung auf die Fließgrenze. ZAMM5 (1925).

  18. Lode, W.: Der Einfluß der mittleren Hauptspannung auf das Fließen der Metalle. Forsch. Geb. Ing.303 (1928).

  19. Burzyński, W.: Studium nad Hipotezami Wytężenia Lwów: Akademia Nauk Technicznych 1928.

    Google Scholar 

  20. Burzyński, W.: Uber die Anstrengungshypothesen. Schweiz. Bauzeitung94, 259–262 (1929).

    Google Scholar 

  21. Drucker, D. C.: Plasticity theory, strength-differential (SD) phenomenon, and volume expansion in metals and plastics. Metall. Trans.4, 667 (1973).

    Google Scholar 

  22. Yagn, Yu. I.: New methods of the strength calculations (in Russian). Vestnik Inzhenerov i Tekhnikov 6 (1931).

  23. Rendulic, L.: Eine Betrachtung zur Frage der plastischen Grenzzustände. Bauing.19, 159–164 (1938).

    Google Scholar 

  24. Sandel, G. D.: Die Anstrengungsfrage. Schweiz. Bauzeitung95, 335–338 (1930).

    Google Scholar 

  25. Balandin, P. P.: On the problem of failure hypotheses, (in Russian). Vestnik Inzhenerov i Tekhnikov 1 (1937).

  26. Torre, C.: Einfluß der mittleren Hauptnormalspannung auf die Fließ- und Bruchgrenze. Ing.-Arch.1, 316–342 (1947).

    Google Scholar 

  27. Torre, C.: Die Grenzzustände statisch beanspruchter Stoffe. Sitzungsber. Akad. Wiss. Wien15, 116–145 (1949).

    Google Scholar 

  28. Torre, C.: Die Mechanik der Grenzbeanspruchungen. Ing.-Arch.4, 93–108 (1950).

    Google Scholar 

  29. Torre, C.: Grenzbedingungen für spröden Bruch und plastisches Verhalten bildsamer Metalle. Ing.-Arch.4, 174–189 (1950).

    Google Scholar 

  30. Klębowski, Z.: Obecny stan wytrzymałościowego obliczania materiałów o własnościach uogólnionych. Przeglad Techniczny 11 (1934).

  31. Botkin, A. I.: Izvestya Vsesoyuz. Nauchn.-Issled. Inst. Gidrotekhniki26 (1940).

  32. Drucker, D. C., Prager, W.: Soil mechanics and plastic analysis or limit design. Q. Appl. Math.10, 157–165 (1952).

    Google Scholar 

  33. Kurtyka, T., Życzkowski, M.: A geometric description of distortional plastic hardening of deviatoric materials. Arch. Mech. Stos.37, 383–395 (1985).

    Google Scholar 

  34. Kurtyka, T., Życzkowski, M.: Evolution equations for distortional plastic hardening. Int. J. Plasticity.12, 191–213 (1996).

    Google Scholar 

  35. Theocaris, P. S.: The paraboloid failure surface for the general orthotropic material. Acta Mech.79, 53–79 (1989).

    Google Scholar 

  36. Theocaris, P. S.: the elliptic paraboloid failure criterion for cellular solids and brittle foams. Acta Mech.89, 93–121 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. F. Ziegler on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zyczkowski, M. Discontinuous bifurcations in the case of the Burzyński-Torre yield condition. Acta Mechanica 132, 19–35 (1999). https://doi.org/10.1007/BF01186957

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01186957

Keywords

Navigation