Skip to main content
Log in

Relations between axons and oligodendroglial cells during initial myelination. II. The individual axon

  • Published:
Journal of Neurocytology

Summary

Axo-glial relations in the ventral funiculus of the spinal cord (SC) and in the corpus callosum (CC) of the cat were examined by electron microscopy during initial myelination. In addition to random transverse and longitudinal sections from several stages, two series of sections were studied. As a first step in myelination the axons become ensheathed by one to three uncompacted glial lamellae (E-sheaths). E-sheaths present a length range from <5 μm to 149 μm (SC) or to 93 μm (CC). E-sheaths are more frequent along SC-axons than CC-axons, and the mean E-sheath is 3.3-fold longer in the former compared to the latter. In both areas naked axon portions occur between successive E-sheaths, but these gaps are insufficient to allow elongation of all short E-sheaths into long ones. Sheaths composed of mixed compacted (M-sheaths) and uncompacted segments have a length range of 66–212 μm in the SC and 66–171 μm in the CC. In relation to the undifferentiated terminations of E-sheaths or mixed E/M-sheaths, undercoated axolemmal domains are always lacking. Fully compacted sheaths were not found in the series from the SC. In the CC, 141–212 μm long compact sheaths were found, with tight axoglial junctions at their terminations. Axolemmal domains with a ‘nodal’ undercoating occur in relation to some of these terminations. In both areas, individual developing axons present a chaotic mixture of naked, ensheathed and myelinated portions; bulges with clusters of vesiculotubular profiles are frequent along naked and ensheathed axonal portions, particularly in the SC. The axon diameter is clearly larger in myelinated than in naked portions of the same axon. On the basis of these results, we propose that the early glial sheaths of developing CNS axons actively elongate and undergo extensive remodelling before compaction. The maximal length of uncompacted E-sheaths, and the sheath length at which axoglial junctions and nodes of Ranvier form, are markedly different in the two areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berbel, P. &Innocenti, G. M. (1988) The development of the corpus callosum in cats: A light and electron-microscopic study.Journal of Comparative Neurology 276, 132–56.

    PubMed  Google Scholar 

  • Berthold, C.-H. (1978) Morphology of normal peripheral axons. InPhysiology and Pathophysiology of Axons (edited byWaxman, S. G.) pp. 3–63. New York: Raven Press.

    Google Scholar 

  • Berthold, C.-H. &Nilsson, I. (1987) Redistribution of Schwann cells in developing feline L7 ventral spinal roots.Journal of Neurocytology 16, 811–28.

    PubMed  Google Scholar 

  • Berthold, C.-H. &Skoglund, S. (1968) Postnatal development of feline paranodal myelin-sheath segments. II. Electron microscopy.Acta Sodetatis Medicorum Upsaliensis 73, Suppl. 9, 127–44.

    Google Scholar 

  • Black, J. A., Waxman, S. G. &Hildebrand, C. (1985) Axo-glial relations in the retina-optic nerve junction of the adult rat: freeze-fracture observations on axon membrane structure.Journal of Neurocytology 14, 887–907.

    PubMed  Google Scholar 

  • Blakemore, W. F. (1981) Observations on myelination and remyelination in the central nervous system. InDevelopment in the nervous system (edited byGarrod, P. R. &Feldman, J. D.) pp. 289–308. Cambridge: Cambridge University Press.

    Google Scholar 

  • Blakemore, W. F. &Murray, J. A. (1981) Quantitative examination of internodal length of remyelinated nerve fibres in the central nervous system.Journal of the Neurological Sciences 49, 273–84.

    PubMed  Google Scholar 

  • Bodian, D. (1951) A note on nodes of Ranvier in the central nervous system.Journal of Comparative Neurology 94, 475–84.

    PubMed  Google Scholar 

  • Bonnaud-Toulze, E. N. &Raine, C. S. (1980) Remodelling during remyelination in the peripheral nervous system.Neuropathology and Applied Neurobiology 6, 279–90.

    PubMed  Google Scholar 

  • Conway, C. J., Wright, F. S. &Bradley, W. E. (1969) Electrophysiological maturation of the pyramidal tract in the post-natal rabbit.Electroencephalography and Clinical Neurophysiology 26, 565–77.

    PubMed  Google Scholar 

  • Fleischhauer, K. &Schlüter, G. (1970) Über das postnatale Wachstum des Corpus callosum der Katze (Felis domestica).Zeitschrift für Anatomie und Entwicklungs-Geschischte 132, 228–39.

    Google Scholar 

  • Foster, R. E., Connors, B. W. &Waxman, S. G. (1982) Rat optic nerve: electrophysiological, pharmacological and anatomical studies during development.Developmental Brain Research 3, 371–86.

    Google Scholar 

  • Fraher, J. P. (1978) Quantitative studies on the maturation of central and peripheral parts of individual ventral motoneuron axons. II. Internodal length.Journal of Anatomy 127, 1–15.

    PubMed  Google Scholar 

  • Fraher, J. P., Kaar, G. F., Bristol, D. C. &Rossiter, J. P. (1988) Development of ventral spinal motoneuron fibres: A correlative study of the growth and maturation of central and peripheral segments of large and small fibre classes.Progress in Neurobiology 31, 199–239.

    PubMed  Google Scholar 

  • Franson, P. &Hildebrand, C. (1975) Postnatal growth of nerve fibres in the pyramidal tract of the rabbit.Neurobiology 5, 8–22.

    PubMed  Google Scholar 

  • Fried, K., Hildebrand, C. &Erdélyi, G. (1982) Myelin sheath thickness and internodal length of nerve fibres in the developing feline inferior alveolar nerve.Journal of the Neurological Sciences 54, 47–57.

    PubMed  Google Scholar 

  • Fried, R. L., Meier, T. &Diem, M. (1981) How is the exact length of an internode determined.Journal of the Neurological Sciences 50, 217–28.

    PubMed  Google Scholar 

  • Friedrich, V. L. &Sternberger, N. H. (1983) The ‘lacy’ oligodendrocyte: an immature form revealed by immunocytochemical staining.Anatomical Record 205, 58A.

    Google Scholar 

  • Gledhill, R. F. &McDonald, W. I. (1977) Morphological characteristics of central demyelination and remyelination: A single-fibre study.Annals of Neurology 1, 552–60.

    PubMed  Google Scholar 

  • Griffin, J. W., Drucker, N., Gold, B. G., Roosenfeld, J., Bezaquen, M., Charmas, L. R., Fahnestock, K. E. &Stocks, A. (1987) Schwann cell proliferation and migration during paranodal demyelination.Journal of Neuroscience 7, 682–99.

    PubMed  Google Scholar 

  • Hess, A. &Young, J. Z. (1952) The nodes of Ranvier.Proceedings of the Royal Society of London, Series B 140, 301–20.

    Google Scholar 

  • Hildebrand, C. (1971a) Ultrastructural and light-microscopic studies of the developing feline spinal cord white matter. I. The nodes of Ranvier.Acta Physiologica Scandinavica Suppl.364, 81–101.

    Google Scholar 

  • Hildebrand, C. (1971b) Ultrastructural and light-microscopical studies of the developing feline spinal cord white matter. II. Cell death and myelin sheath disintegration in the early postnatal period.Acta Physiologica Scandinavica Suppl.364, 109–44.

    Google Scholar 

  • Hildebrand, C. &Skoglund, S. (1971) Histochemical studies of adult and developing feline spinal cord white matter.Acta Physiologica Scandinavica Suppl. 364, 81–109.

    Google Scholar 

  • Hildebrand, C. &Waxman, S. G. (1984) Postnatal differentiation of the rat optic nerve fibers: Electron microscopic observations on the development of nodes of Ranvier and axoglial relations.Journal of Comparative Neurology 224, 25–37.

    PubMed  Google Scholar 

  • Hildebrand, C., Mustafa, G. Y. &Waxman, S. G. (1986) Remodelling of internodes in regenerated rat sciatic nerve: electron microscopic observations.Journal of Neurocytology,15, 681–92.

    PubMed  Google Scholar 

  • Hildebrand, C., Remahl, S. &Waxman, S. G. (1985) Axo-glial relations in the retina-optic nerve junction of the adult rat: electron-microscopic observations.Journal of Neurocytology 14, 597–617.

    PubMed  Google Scholar 

  • Hildebrand, C., Mustafa, G. Y., Bo We, C. &Kocsis, J. D. (1987) Nodal spacing along regenerated axons following a crush lesion of the developing rat sciatic nerve.Developmental Brain Research 32, 147–54.

    Google Scholar 

  • Hirano, A. &Dembitzer, H. M. (1967) A structural analysis of the myelin sheath in the central nervous system.Journal of Cell Biology 34, 555–67.

    PubMed  Google Scholar 

  • Knapp, P. E., Bartlett, W. P. &Skoff, R. P. (1987) Cultured oligodendrocytes mimicin vivo phenotypic characteristics: cell shape, expression of myelin-specific antigens, and membrane production.Developmental Biology 120, 356–65.

    PubMed  Google Scholar 

  • Knobler, R. L., Stempak, J. G. &Laurencin, M. (1974) Oligodendroglial ensheathment of axons during myelination in the developing rat central nervous system. A serial section electron microscopical study.Journal of Ultrastructure Research 49, 34–49.

    PubMed  Google Scholar 

  • Knobler, R. L., Stempak, J. G. &Laurencin, M. (1976) Nonuniformity of the oligodendroglial ensheathment of axons during myelination in the developing rat central nervous system. A serial section electron microscopical study.Journal of Ultrastructure Research 55, 417–32.

    PubMed  Google Scholar 

  • Lumsden, C. E. &Pomerat, C. M. (1951) Normal oligodendrocytes in tissue culture. A preliminary report on the pulsatile glial cells in tissue cultures from the corpus callosum of the normal adult rat brain.Experimental Cell Research 2, 103–14.

    Google Scholar 

  • McDonald, W. I. &Ohlrich, G. D. (1971) Quantitative anatomical measurements on single isolated fibres from the cat spinal cord.Journal of Anatomy 110, 191–202.

    PubMed  Google Scholar 

  • Murray, J. A. &Blakemore, W. F. (1980) The relationship between internodal length and fibre diameter in the spinal cord of the cat.Journal of the Neurological Sciences 45, 29–41.

    PubMed  Google Scholar 

  • Nakai, J. (1954) The osmic acid injection method for demonstration of nodes in the central nervous system.Anatomical Record 119, 267–74.

    PubMed  Google Scholar 

  • Penfield, W. (1932) Neuroglia: Normal and pathological. InCytology and Cellular Pathology of the Nervous System. pp. 437–42. New York: Hoeber.

    Google Scholar 

  • Plenk, H. (1934) Die Schwannsche Scheide der markhal-tigen Nervenfasern.Zeitschrift für mikroskopische-anatomische Forschung 36, 191–214.

    Google Scholar 

  • Raine, C. S. (1984) Morphology of myelin and myelination. InMyelin (edited byMorell, P.) pp. 1–41. New York and London: Plenum Press.

    Google Scholar 

  • Remahl, S. &Hildebrand, C. (1982) Changing relation between onset of myelination and axon diameter range in developing feline white matter.Journal of the Neurological Sciences 54, 33–45.

    PubMed  Google Scholar 

  • Remahl, S. &Hildebrand, C. (1990) Relations between axons and oligodendroglial cells during initial myelination. I. The glial unit.Journal of Neurocytology 1990, 313–28.

    Google Scholar 

  • Ritchie, J. M. &Chiu, S. Y. (1981) Distribution of sodium and potassium channels in mammalian myelinated nerve. InAdvances in Neurology. Demyelinating Disease: Basic and Clinical Electrophysiology (edited byWaxman, S. G. &Ritchie, J. M.) pp. 329–42. New York: Raven Press.

    Google Scholar 

  • Romanes, G. J. (1947) The prenatal medullation of the sheep's nervous system.Journal of Anatomy 81, 64–81.

    Google Scholar 

  • Rosenbluth, J. (1981) Freeze-fracture approaches to iono- phore localization in normal and myelin-deficient nerves. InAdvances in Neurology. Demyelinating Disease: Basic and Clinical Electrophysiology (edited byWaxman, S. G. &Ritchie, J. M.) pp. 391–418. New York: Raven Press.

    Google Scholar 

  • Seggie, J. &Berry, M. (1972) Ontogeny of interhemispheric evoked potentials in the rat: Significance of myelination of the corpus callosum.Experimental Neurology 35, 215–32.

    PubMed  Google Scholar 

  • Storts, R. W. &Koestner, A. (1969) Development and characterization of myelin in tissue culture of canine cerebellum.Zeitung für Zellforschung 95, 9–18.

    Google Scholar 

  • Waxman, S. G. (1970) Closely spaced nodes of Ranvier in the teleost brain.Nature (Land.) 227, 283–4.

    Google Scholar 

  • Waxman, S. G. &Bennett, M. V. L. (1970) An analysis of the pattern of myelination of some preterminal fibres in the teleost central nervous system.Journal of Cell Biology 47, 222a.

    Google Scholar 

  • Waxman, S. G. &Bennett, M. V. L. (1972) Relative conduction veolocities of small myelinated and non-myelinated fibres in the central nervous system.Nature (Lond.) 238, 217–9.

    Google Scholar 

  • Waxman, S. G. &Black, J. A. (1985) Membrane structure of vesiculotubular complexes in developing axons in the rat optic nerve: freeze-fracture evidence for sequential membrane assembly.Proceedings of the Royal Society London, Series B 225, 357–63.

    Google Scholar 

  • Webster, H. D. &Fa Villa, J. T. (1984) Development of peripheral nerve fibres. InPeripheral Neuropathy (edited byDyck, P. J., Thomas, P. K., Lambert, E. H. &Bunge, R. P.) pp. 329–59. Philadelphia: Saunders.

    Google Scholar 

  • Williams, R. W., Bastiani, M. J., Lia, B. &Chalupa, L. M. (1986) Growth cones, dying axons, and developmental fluctuations in the fibre population of the cat's optic nerve.Journal of Comparative Neurology 246, 32–69.

    PubMed  Google Scholar 

  • Windle, W. F., Fish, M. W. &O'donnell, J. E. (1934) Myelogeny of the cat as related to development of fibre tracts and prenatal behavior patterns.Journal of Comparative Neurology 59, 139–57.

    Google Scholar 

  • Wood, P. &Bunge, R. P. (1984) The biology of the oligodendrocyte. InOligodendroglia (edited byNorton, W. T.) pp. 1–45. New York and London: Plenum Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remahl, S., Hildebrand, C. Relations between axons and oligodendroglial cells during initial myelination. II. The individual axon. J Neurocytol 19, 883–898 (1990). https://doi.org/10.1007/BF01186817

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01186817

Keywords

Navigation