Skip to main content

Development of Oligodendrocytes in the Vertebrate CNS

  • Chapter
  • First Online:
Myelin Repair and Neuroprotection in Multiple Sclerosis

Abstract

One characteristic of the vertebrate CNS is the presence of myelin, a fatty insulation that surrounds individual axons and facilitates the rapid conduction and enhances the efficiency of electrical impulses along the length of the axon. Oligodendrocytes are the primary cellular source of myelin in the CNS, and their development has been extensively studied over the last 2 decades. Compact myelin appears as concentric rings of modified plasma membrane that ensheaths a segment or internode along an axon. The gap between two adjacent internodes on the same axon is known as the Node of Ranvier and is a complex structure that maintains the integrity of the axon–glial unit. The discontinuous nature of myelin and the localized concentration of ion channels at Nodes of Ranvier result in accelerated conduction of electrical signals along axons and a lowering of the threshold for propagating such signals. Not all axons are myelinated, and some axons have regions that are both unmyelinated and myelinated. The functioning of the adult nervous system is however dependent on the appropriate level of myelination, and diseases or injuries that reduce the extent of local myelination result in functional deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abney ER, Bartlett PP, Raff MC (1981) Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain. Dev Biol 83:301–310

    PubMed  CAS  Google Scholar 

  • Acheson A, Sunshine JL, Rutishauser U (1991) NCAM polysialic acid can regulate both cell-cell and cell-substrate interactions. J Cell Biol 114:143–153

    PubMed  CAS  Google Scholar 

  • Back SA, Tuohy TM, Chen H, Wallingford N, Craig A et al (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11:966–972

    PubMed  CAS  Google Scholar 

  • Bansal R, Stefansson K, Pfeiffer SE (1992) Proligodendroblast antigen (POA), a developmental antigen expressed by A007/O4-positive oligodendrocyte progenitors prior to the appearance of sulfatide and galactocerebroside. J Neurochem 58:2221–2229

    PubMed  CAS  Google Scholar 

  • Baracskay KL, Kidd GJ, Miller RH, Trapp BD (2007) NG2-positive cells generate A2B5-positive oligodendrocyte precursor cells. Glia 55:1001–1010

    PubMed  Google Scholar 

  • Barres BA, Raff MC (1994) Control of oligodendrocyte number in the developing rat optic nerve. Neuron 12:935–942

    PubMed  CAS  Google Scholar 

  • Barres BA, Raff MC, Gaese F, Bartke I, Dechant G, Barde YA (1994) A crucial role for neurotrophin-3 in oligodendrocyte development. Nature 367:371–375

    PubMed  CAS  Google Scholar 

  • Bartsch U, Faissner A, Trotter J, Dorries U, Bartsch S et al (1994) Tenascin demarcates the boundary between the myelinated and non-myelinated part of retinal ganglion cell axons in the developing and adult mouse. J Neurosci 14:4756–4768

    PubMed  CAS  Google Scholar 

  • Bilican B, Fiore-Heriche C, Compston A, Allen ND, Chandran S (2008) Induction of Olig2 precursors by FGF involves BMP signalling blockade at the Smad level. PLoS One 3:e2863

    PubMed  Google Scholar 

  • Bogler O, Wren D, Barnett SC, Land H, Noble M (1990) Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells. Proc Natl Acad Sci USA 87:6368–6372

    PubMed  CAS  Google Scholar 

  • Brinkmann BG, Agarwal A, Sereda MW, Garratt AN, Muller T et al (2008) Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 59:581–595

    PubMed  CAS  Google Scholar 

  • Cai J, Qi Y, Hu X, Tan M, Liu Z et al (2005) Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of on Nkx6 regulation and Shh signaling. Neuron 45:41–53

    PubMed  CAS  Google Scholar 

  • Calver AR, Hall AC, Yu WP, Walsh FS, Heath JK et al (1998) Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron 20:869–882

    PubMed  CAS  Google Scholar 

  • Cheng X, Wang Y, He Q, Qiu M, Whittemore SR, Cao Q (2007) Bone morphogenetic protein signaling and olig1/2 interact to regulate the differentiation and maturation of adult oligodendrocyte precursor cells. Stem Cells 25:3204–3214

    PubMed  CAS  Google Scholar 

  • Dakubo GD, Beug ST, Mazerolle CJ, Thurig S, Wang Y, Wallace VA (2008) Control of glial precursor cell development in the mouse optic nerve by sonic hedgehog from retinal ganglion cells. Brain Res 1228:27–42

    PubMed  CAS  Google Scholar 

  • De Biase LM, Nishiyama A, Bergles DE (2010) Excitability and synaptic communication within the oligodendrocyte lineage. J Neurosci 30:3600–3611

    PubMed  Google Scholar 

  • Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A et al (2010) Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination. Neuron 65:597–611

    PubMed  CAS  Google Scholar 

  • Dziembowska M, Tham TN, Lau P, Vitry S, Lazarini F, Dubois-Dalcq M (2005) A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia 50:258–269

    PubMed  CAS  Google Scholar 

  • Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC et al (2009) Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138:172–185

    PubMed  CAS  Google Scholar 

  • Ericson J, Briscoe J, Rashbass P, Heyningen V, Jessell TM (1997) Graded sonic hedgehog signaling and the specification of cell fate in the ventral neural tube. Cold Spring Harb Symp Quant Biol 62:451–466

    PubMed  CAS  Google Scholar 

  • Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA et al (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23:1571–1585

    PubMed  CAS  Google Scholar 

  • Fancy SP, Kotter MR, Harrington EP, Huang JK, Zhao C et al (2010) Overcoming remyelination failure in multiple sclerosis and other myelin disorders. Exp Neurol 225:18–23

    PubMed  CAS  Google Scholar 

  • Feigenson K, Reid M, See J, Crenshaw EB 3rd, Grinspan JB (2009) Wnt signaling is sufficient to perturb oligodendrocyte maturation. Mol Cell Neurosci 42:255–265

    PubMed  CAS  Google Scholar 

  • ffrench-Constant C, Miller RH, Burne JF, Raff MC (1988) Evidence that migratory oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells are kept out of the rat retina by a barrier at the eye-end of the optic nerve. J Neurocytol 17:13–25

    PubMed  CAS  Google Scholar 

  • Fortin D, Rom E, Sun H, Yayon A, Bansal R (2005) Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage. J Neurosci 25:7470–7479

    PubMed  CAS  Google Scholar 

  • Frost E, Kiernan BW, Fassner A, ffrench-Constant C (1996) Regulation of oligodendrocyte precursor migration by extracellular matrix: evidence for substrate-specific inhibition of migration by Tenascin-C. Dev Neurosci 18:266–273

    PubMed  CAS  Google Scholar 

  • Frost EE, Zhou Z, Krasnesky K, Armstrong RC (2009) Initiation of oligodendrocyte progenitor cell migration by a PDGF-A activated extracellular regulated kinase (ERK) signaling pathway. Neurochem Res 34:169–181

    PubMed  CAS  Google Scholar 

  • Fuller ML, DeChant AK, Rothstein B, Caprariello A, Wang RZ, Hall AK, Miller RH (2007) Bone morphogenetic proteins promote gliosis in demyelinating spinal cord lesions. Annals of Neurology, 62(3):288–300. PMID: 17696121

    Google Scholar 

  • Gao L, Miller RH (2006) Specification of optic nerve oligodendrocyte precursors by retinal ganglion cell axons. J Neurosci 29:7619–7628

    Google Scholar 

  • Garcion E, Faissner A, ffrench-Constant C (2001) Knockout mice reveal a contribution of the extracellular matrix molecule tenascin-C to neural precursor proliferation and migration. Development 128:2485–2496

    PubMed  CAS  Google Scholar 

  • Gomes W, Mehler M, Kessler J (2003) Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev Biol 255:164–177

    PubMed  CAS  Google Scholar 

  • Grinspan JB, Edell E, Carpio DF, Beesley JS, Lavy L et al (2000) Stage-specific effects of bone morphogenetic proteins on the oligodendrocyte lineage. J Neurobiol 43:1–17

    PubMed  CAS  Google Scholar 

  • Gudz TI, Komuro H, Macklin WB (2006) Glutamate stimulates oligodendrocyte progenitor migration mediated via an alphav integrin/myelin proteolipid protein complex. J Neurosci 26:2458–2466

    PubMed  CAS  Google Scholar 

  • Howng SY, Avila RL, Emery B, Traka M, Lin W et al (2010) ZFP191 is required by oligodendrocytes for CNS myelination. Genes Dev 24:301–311

    PubMed  CAS  Google Scholar 

  • Hu BY, Du ZW, Li XJ, Ayala M, Zhang SC (2009) Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development 136:1443–1452

    PubMed  CAS  Google Scholar 

  • Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087

    PubMed  CAS  Google Scholar 

  • Jacobson M (1978) Developmental neurobiology. Plenum, New York

    Google Scholar 

  • Jarjour AA, Kennedy TE (2004) Oligodendrocyte precursors on the move: mechanisms directing migration. Neuroscientist 10:99–105

    PubMed  Google Scholar 

  • Jarjour AA, Manitt C, Moore SW, Thompson KM, Yuh SJ, Kennedy TE (2003) Netrin1 is a chemorepellent for oligodendrocyte precursor cells in the embryonic spinal cord. J Neurosci 23:68–72

    Google Scholar 

  • Jessell T (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29

    PubMed  CAS  Google Scholar 

  • Jiang J, Hui CC (2008) Hedgehog signaling in development and cancer. Dev Cell 15:801–812

    PubMed  CAS  Google Scholar 

  • Karadottir R, Attwell D (2007) Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 145:1426–1438

    PubMed  CAS  Google Scholar 

  • Kerstetter AE, Padovani-Claudio DA, Bai L, Miller RH (2009) Inhibition of CXCR2 signaling promotes recovery in models of multiple sclerosis. Exp Neurol 220:44–56

    PubMed  CAS  Google Scholar 

  • Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson W (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9:173–179

    PubMed  CAS  Google Scholar 

  • Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289:1754–1757

    PubMed  CAS  Google Scholar 

  • Lee X, Yang Z, Shao Z, Rosenberg SS, Levesque M et al (2007) NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation. J Neurosci 27:220–225

    PubMed  CAS  Google Scholar 

  • Li H, Richardson WD (2009) Genetics meets epigenetics: HDACs and Wnt signaling in myelin development and regeneration. Nat Neurosci 12:815–817

    PubMed  CAS  Google Scholar 

  • Liu L, Belkadi A, Darnall L, Hu T, Drescher C et al (2010) CXCR2-positive neutrophils are essential for cuprizone-induced demyelination: relevance to multiple sclerosis. Nat Neurosci 13:319–326

    PubMed  CAS  Google Scholar 

  • Marin-Husstege M, Muggironi M, Liu A, Casaccia-Bonnefil P (2002) Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J Neurosci 22:10333–10345

    PubMed  CAS  Google Scholar 

  • Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    PubMed  CAS  Google Scholar 

  • Mi S et al (2004) LINGO-1is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7:221–228

    PubMed  CAS  Google Scholar 

  • Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S et al (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 8(6):745–751

    PubMed  CAS  Google Scholar 

  • Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES et al (2007) LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med 10:1228–1233

    Google Scholar 

  • Mi S, Miller RH, Tang W, Lee X, Hu B et al (2009) Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann Neurol 65:304–315

    PubMed  CAS  Google Scholar 

  • Miller RH (1999) Contact with central nervous system myelin inhibits oligodendrocyte progenitor maturation. Dev Biol 216:359–368

    PubMed  Google Scholar 

  • Miller RH (2002) Regulation of oligodendrocyte development in the vertebrate CNS. Prog Neurobiol 67:451–467

    PubMed  CAS  Google Scholar 

  • Miller RH, Dinsio KJ, Wang R-Z, Geertman R, Maier CE, Hall AK (2004) Patterning of spinal cord oligodendrocyte development by dorsally derived BMP4. J Neurosci Res 76:9–19

    PubMed  CAS  Google Scholar 

  • Nishiyama A, Lin X-H, Giese N, Heldin C-H, Stallcup WB (1996) Interaction between NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells is required for optimal response to PDGF. J Neurosci Res 43:315–330

    PubMed  CAS  Google Scholar 

  • Ono K, Bansal R, Payne J, Rutishauser U, Miller RH (1995) Early development and dispersal of oligodendrocyte precursors in the embryonic chick spinal cord. Development 121:1743–1754

    PubMed  CAS  Google Scholar 

  • Orentas DM, Miller RH (1996) The origin of spinal cord oligodendrocytes is dependent on local influences from the notochord. Dev Biol 177:43–53

    PubMed  CAS  Google Scholar 

  • Orentas DM, Miller RH (1998) Regulation of oligodendrocyte development. Mol Neurosci 18(3):247–259

    CAS  Google Scholar 

  • Padovani-Claudio D, Lui L, Ransohoff RM, Miller RH (2006) Alterations in the oligodendrocyte lineage, myelin and white matter in adult mice lacking the chemokine receptor CXCR2. Glia 54:471–483

    PubMed  Google Scholar 

  • Park SK, Miller RH, Krane I, Vartanian T (2001) The erbB2 gene is required for the development of terminally differentiated spinal cord oligodendrocytes. J Cell Biol 154:1245–1258

    PubMed  CAS  Google Scholar 

  • Patel JR, McCandless EE, Dorsey D, Klein RS (2010) CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination. Proc Natl Acad Sci USA 107:11062–11067

    PubMed  CAS  Google Scholar 

  • Perez Villages EM, Olivier C, Spassky N, Poncet C, Cochard P et al (1999) Early specification of oligodendrocytes in the chick embryonic brain. Dev Biol 216:98–113

    Google Scholar 

  • Pringle NP, Richardson WD (1993) A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 117:525–533

    PubMed  CAS  Google Scholar 

  • Pringle NP, Yu W, Guthrie S, Roelink H, Lumsden A et al (1996) Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog. Dev Biol 177:30–42

    PubMed  CAS  Google Scholar 

  • Raff MC (1989) Glial cell diversification in the rat optic nerve. Science 243:1450–1455

    PubMed  CAS  Google Scholar 

  • Raff MC, Mirsky R, Fields KL, Lisak RP, Dorfman SH et al (1978) Galactocerebroside is a specific cell surface antigenic marker for oligodendrocytes in culture. Nature 274:813–816

    PubMed  CAS  Google Scholar 

  • Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303:390–396

    PubMed  CAS  Google Scholar 

  • Raff MC, Abney ER, Miller RH (1984) Two glial cell lineages diverge prenatally in rat optic nerve. Dev Biol 106:53–60

    PubMed  CAS  Google Scholar 

  • Raff MC, Lillien LE, Richardson WD, Burne JF, Noble MD (1988) Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature 333:562–565

    PubMed  CAS  Google Scholar 

  • Raper JA (2000) Semaphorins and their receptors in vertebrates and invertebrates. Curr Opin Neurobiol 10:88–94

    PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    PubMed  CAS  Google Scholar 

  • Richardson WD, Pringle N, Mosley MJ, Westermark B, Dubois-Dalcq M (1988) A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53:309–319

    PubMed  CAS  Google Scholar 

  • Richardson WD, Kessaris N, Pringle N (2006) Oligodendrocyte wars. Nat Rev Neurosci 7:11–18

    PubMed  CAS  Google Scholar 

  • Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K et al (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11:1392–1401

    PubMed  CAS  Google Scholar 

  • Robinson S, Tani M, Streiter RM, Ransohoff RM, Miller RH (1998) The chemokine growth related oncogene-a promotes spinal cord precursor proliferation. J Neurosci 18:10457–10463

    PubMed  CAS  Google Scholar 

  • Rowitch D (2004) Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5:409–419

    PubMed  CAS  Google Scholar 

  • Samanta J, Burke GM, McGuire T, Pisarek AJ, Mukhopadhyay A et al (2007) BMPR1a signaling determines numbers of oligodendrocytes and calbindin-expressing interneurons in the cortex. J Neurosci 27:7397–7407

    PubMed  CAS  Google Scholar 

  • Shimizu T, Kagawa T, Wada T, Muroyama Y, Takada S, Ikenaka K (2005) Wnt signaling controls the timing of oligodendrocyte development in the spinal cord. Dev Biol 282:397–410

    PubMed  CAS  Google Scholar 

  • Sommer I, Schachner M (1981) Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol 83:311–327

    PubMed  CAS  Google Scholar 

  • Spassky N, Goujet-Zalc C, Parmantier E, Olivier C, Martinez S et al (1998) Multiple Restricted Origin of Oligodendrocytes. J Neurosci 18:8331–8343

    PubMed  CAS  Google Scholar 

  • Spassky N, de Castro F, Le Bras B, Heydon K, Queraud-LeSaux F et al (2002) Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1. J Neurosci 22:5992–6004

    PubMed  CAS  Google Scholar 

  • Sugimoto Y, Taniguchi M, Yagi T, Akagi Y, Nojyo Y, Tamamaki N (2001) Guidance of glial precursor cell migration by secreted cues in the developing optic nerve. Development 128:3321–3330

    PubMed  CAS  Google Scholar 

  • Sussman CR, Vartanian T, Miller RH (2005) The ErbB4 neuregulin receptor mediates suppression of oligodendrocyte maturation. J Neurosci 25:5757–5762

    PubMed  CAS  Google Scholar 

  • Temple S, Raff MC (1986) Clonal analysis of oligodendrocyte development in culture: evidence for a developmental clock that counts cell divisions. Cell 44:773–779

    PubMed  CAS  Google Scholar 

  • Timsit S, Martinez S, Allinquant B, Peyron F, Puelles L, Zalc B (1995) Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J Neurosci 15:1012–1024

    PubMed  CAS  Google Scholar 

  • Tripathi RB, Rivers LE, Young KM, Jamen F, Richardson WD (2010) NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease. J Neurosci 30:16383–16390

    PubMed  CAS  Google Scholar 

  • Tripathi RB, Clarke LE, Burzomato V, Kessaris N, Anderson PN et al (2011) Dorsally and ventrally derived oligodendrocytes have similar electrical properties but myelinate preferred tracts. J Neurosci 31:6809–6819

    PubMed  CAS  Google Scholar 

  • Tsai H-H, Miller RH (2002) Glial cell migration directed by axon guidance cues. Trends Neurosci 25:173–175

    PubMed  CAS  Google Scholar 

  • Tsai H, Frost E, Robinson S, Ransohoff R, Sussman C et al (2002) The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 110:373–383

    PubMed  CAS  Google Scholar 

  • Tsai H-H, Tessier-Lavinge M, Miller RH (2003) Netrin I mediates spinal cord oligodendrocyte precursor dispersal. Development 130:2095–2105

    PubMed  CAS  Google Scholar 

  • Tsai HH, Macklin WB, Miller RH (2009) Distinct modes of migration position oligodendrocyte precursors for localized cell division in the developing spinal cord. J Neurosci Res 87(15):3320–3330

    PubMed  CAS  Google Scholar 

  • Ulloa F, Marti E (2010) Wnt won the war: antagonistic role of Wnt over Shh controls dorso-ventral patterning of the vertebrate neural tube. Dev Dyn 239:69–76

    PubMed  CAS  Google Scholar 

  • Vartanian T, Goodearl A, Viehover A, Fischbach G (1997) Axonal neuregulin signal cells of the oligodendrocyte lineage through activation of HER4 and Schwann cells through HER2 and HER3. J Cell Biol 137:211–220

    PubMed  CAS  Google Scholar 

  • Vartanian T, Fischbach G, Miller R (1999) Failure of spinal cord oligodendrocyte development in mice lacking neuregulin. Proc Natl Acad Sci USA 96:731–735

    PubMed  CAS  Google Scholar 

  • Wang S, Sdrulla AD, diSibio G, Bush G, Nofziger D et al (1998) Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21:63–75

    PubMed  Google Scholar 

  • Warf BC, Fok-Seang J, Miller RH (1991) Evidence for the ventral origin of oligodendrocyte precursors in the rat spinal cord. J Neurosci 11:2477–2488

    PubMed  CAS  Google Scholar 

  • Williams A, Piaton G, Aigrot MS, Belhadi A, Theaudin M et al (2007) Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 130:2554–2565

    PubMed  Google Scholar 

  • Wolswijk G, Noble M (1989) Identification of an adult-specific glial progenitor cell. Development 105:387–400

    PubMed  CAS  Google Scholar 

  • Zhang H, Miller RH (1995) Asynchronous differentiation of clonally related spinal cord oligodendrocytes. Mol Cell Neurosci 6:16–31

    PubMed  CAS  Google Scholar 

  • Zhao X, He X, Han X, Yu Y, Ye F et al (2010) MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65:612–626

    PubMed  CAS  Google Scholar 

  • Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135:145–157

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, R.H. (2013). Development of Oligodendrocytes in the Vertebrate CNS. In: Duncan, I., Franklin, R. (eds) Myelin Repair and Neuroprotection in Multiple Sclerosis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2218-1_1

Download citation

Publish with us

Policies and ethics