Skip to main content
Log in

Local well-posedness for incompressible neo-Hookean elastic equations in almost critical Sobolev spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Inspired by a pioneer work of Andersson and Kapitanski (Arch Ration Mech Anal 247(2):Paper No. 21, 76 pp, 2023), we prove the local well-posedness of the Cauchy problem of incompressible neo-Hookean equations if the initial deformation and velocity belong to \(H^{\frac{n+2}{2}+}({\mathbb {R}}^n) \times H^{\frac{n}{2}+}({\mathbb {R}}^n)\) (\(n=2,3\)), where \(\frac{n+2}{2}\) and \(\frac{n}{2}\) is respectively a scaling-invariant exponent for deformation and velocity in Sobolev spaces. Our new observation relies on two folds: a reduction to a second-order wave-elliptic system of deformation and velocity; and a “wave-map type” null form intrinsic in this coupled system. In particular, the wave nature with “wave-map type” null form allows us to prove a bilinear estimate of Klainerman–Machedon type for nonlinear terms. So we can lower \(\frac{1}{2}\)-order regularity in 3D and \(\frac{3}{4}\)-order regularity in 2D for well-posedness compared with Andersson and Kapitanski (Arch Ration Mech Anal 247(2):Paper No. 21, 76 pp, 2023).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The authors also confirm that the data supporting the findings of this study are available within the article.

Notes

  1. In the summation the repeated indices run from 1 to n.

  2. Our result also works for \(\textbf{x}=A\textbf{y}+\textbf{U}(t,\textbf{y})\), where A is a constant matrix.

  3. In our paper, we also call \(Q_0\)-type as wave-map type.

  4. The wave maps has \(Q_0\)-type null form, which is also a special model of (1.23).

  5. The space \({\mathcal {S}}'(\mathbb {R}^{1+n})\) is the dual space of Schwartz functions.

  6. Here (2.12) is equivalent to \(\text {det}\textbf{F}=1\).

References

  1. Andersson L., Kapitanski, L.: Cauchy problem for incompressible neo-Hookean materials. Arch. Ration. Mech. Anal. 247(2), Paper No. 21, 76 pp (2023)

  2. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)

    Book  Google Scholar 

  3. Bourgain, J., Li, D.: Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces. Invent. Math. 201(1), 97–157 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J., Li, D.: Strong ill-posedness of the 3D incompressible Euler equation in borderline spaces. Int. Math. Res. Not. 1–110 (2019)

  5. Chae, D.: On the well-posedness of the Euler equations in the Triebel–Lizorkin spaces. Commun. Pure Appl. Math. 55(5), 654–678 (2002)

    Article  MathSciNet  Google Scholar 

  6. Fang, D., Wang, C.: Local well-posedness and ill-posedness on the equation of type \(\square u=u^k(\partial u)^\alpha \). Chin. Ann. Math. 3, 361–378 (2005)

    Article  Google Scholar 

  7. Foschi, D., Klainerman, S.: Bilinear space-time estimates for homogeneous wave equations. Ann. Sci. Ecole Norm. Sup. (4) 33(2), 211–274 (2000)

    Article  MathSciNet  Google Scholar 

  8. Grigoryan, V., Nahmod, A.R.: Almost critical well-posedness for nonlinear wave equations with \(Q_{\mu \nu }\) null forms in 2D. Math. Res. Lett. 21(2), 313–332 (2014)

    Article  MathSciNet  Google Scholar 

  9. Grünrock, A.: On the wave equation with quadratic nonlinearities in three space dimensions. J. Hyperbolic Differ. Equ. 8(1), 1–8 (2011)

    Article  MathSciNet  Google Scholar 

  10. Liu, M.Y., Wang, C.B.: Concerning ill-posedness for semilinear wave equations. Calc. Var. 60, 19 (2021)

    Article  MathSciNet  Google Scholar 

  11. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41(7), 891–907 (1988)

    Article  MathSciNet  Google Scholar 

  12. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  Google Scholar 

  13. Keel, M., Tao, T.: Local and global well-posedness of wave maps on \(\textbf{R} ^{1+1}\) for rough data. Inte. Math. Res. Notices 21, 1117–1156 (1998)

    Article  Google Scholar 

  14. Klainerman, S.: Long time behaviour of solutions to nonlinear wave equations. In: Ciesielski, Z., Olech, C. (eds.) Proceedings of the International Congress of Mathematicians (Warsaw, 1983), vols. 1, 2, pp. 1209–1215. PWN, Warsaw (1984)

  15. Klainerman S., Machedon, M.: Space-time estimates for null forms and the local existence theorem. Commun. Pure Appl. Math. 1221–1268 (1993)

  16. Klainerman S., Machedon, M.: Smoothing estimates for null forms and applications. Int. Math. Res. Not. 383–389 (1994)

  17. Klainerman, S., Selberg, S.: Remark on the optimal regularity for equations of wave maps type. Commun. Partial Differ. Equ. 22(5–6), 901–918 (1997)

    MathSciNet  Google Scholar 

  18. Klainerman, S., Selberg, S.: Bilinear estimates and applications to nonlinear wave equations. Commun. Contemp. Math. 4(2), 223–295 (2002)

    Article  MathSciNet  Google Scholar 

  19. Lindblad, H.: A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations. Duke Math. J. 72(2), 503–539 (1993)

    Article  MathSciNet  Google Scholar 

  20. Lindblad, H.: Counterexamples to local existence for semi-linear wave equations. Am. J. Math. 118(1), 1–16 (1996)

    Article  MathSciNet  Google Scholar 

  21. Lagrange, J.L.: Analytical Mechanics. Boston Studies in the Philosophy of Science, vol. 191. Kluwer, Dordrecht (1997). Translated from the 1811 French original, with an introduction and edited by Auguste Boissonnade and Vickor N. Vagliente, With a preface by Craig G. Fraser

  22. Lei, Z.: Global well-posedness of incompressible elastodynamics in 2D. Commun. Pure Appl. Math. 69(11), 2072–2106 (2016)

    Article  Google Scholar 

  23. Lei, Z., Sideris, T.C., Zhou, Y.: Almost global existence for 2-D incompressible isotropic elastodynamics. Trans. Am. Math. J. 367(11), 8175–8197 (2015)

    Article  MathSciNet  Google Scholar 

  24. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover, New York (1994). Corrected reprint of the 1983 original

  25. Ohlmann, G.: Ill-posedness of a quasilinear wave equation in two dimensions for data in \(H^{\frac{7}{4}}\). arXiv:2107.03732 (2021)

  26. Ponce, G., Sideris, T.C.: Local regularity of nonlinear wave equations in three space dimensions. Commun. Partial Differ. Equ. 18(1–2), 169–177 (1993)

    Article  MathSciNet  Google Scholar 

  27. Selberg, S.: Multilinear space-time estimates and applications to local existence theory for nonlinear wave equations. Ph.D. thesis, Princeton University, ProQuest LLC, Ann Arbor, MI (1999)

  28. Sideris, T.C., Thomases, B.: Global existence for three-dimensional incompressible isotropic elastodynamics. Commun. Pure Appl. Math. 60(12), 1707–1730 (2007)

    Article  MathSciNet  Google Scholar 

  29. Tao, T.: Global regularity of wave maps. I. Small critical Sobolev norm in high dimension. Int. Math. Res. Not. (6), 299–328 (2001)

  30. Tao, T.: Global regularity of wave maps. II. Small energy in two dimensions. Commun. Math. Phys. 224(2), 443–544 (2001)

    Article  MathSciNet  Google Scholar 

  31. Tataru, D.: On the equation \(\square u=|\nabla u|^2\) in \(5+1\) dimensions. Math. Res. Lett. 6(5), 469–485 (1999)

    Article  MathSciNet  Google Scholar 

  32. Tataru, D.: Rough solutions for the wave maps equation. Am. J. Math. 127(2), 293–377 (2005)

    Article  MathSciNet  Google Scholar 

  33. Wang, X.: Global existence for the 2D incompressible isotropic elastodynamics for small initial data. Ann. Henri Poincare 18, 1213–1267 (2017)

    Article  MathSciNet  Google Scholar 

  34. Wang, S., Zhou, Y.: Physical space approach to wave equation bilinear estimates revisit. arXiv:2303.13081

  35. Zhou, Y.: Local existence with minimal regularity for nonlinear wave equations. Am. J. Math. 119, 671–703 (1997)

    Article  MathSciNet  Google Scholar 

  36. Zhou, Y.: On the equation \(\square \phi =|\nabla \phi |^2\) in four space dimensions. Chin. Ann. Math. Ser. B 24(3), 293–302 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely express a great attitude to the reviewers for their helpful comments. The author is supported by National Natural Science Foundation of China (Grant No. 12101079) and the Fundamental Research Funds for the Central Universities (Grant No. 531118010867).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huali Zhang.

Ethics declarations

Conflict of interest

The authors declared that this work does not have any conflicts of interest.

Additional information

Communicated by Laszlo Szekelyhidi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H. Local well-posedness for incompressible neo-Hookean elastic equations in almost critical Sobolev spaces. Calc. Var. 63, 66 (2024). https://doi.org/10.1007/s00526-024-02681-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-024-02681-0

Mathematics Subject Classification

Navigation