Skip to main content
Log in

A viscoplastic theory with thermodynamic considerations

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A thermodynamic foundation using the concept of internal state variables is given for a general theory of viscoplasticity for initially isotropic materials. Three, fundamental, internal, state variables are admitted; they are: a tensorial back stress for kinematic effects, and scalar drag and yield strengths for isotropic effects. All three are considered to evolve phenomenologically according to competitive processes between strain hardening, deformation induced dynamic recovery, and thermally induced static recovery. Within this phenomenological framework, a thermodynamically admissible set of evolution equations is proposed. The theory allows each of the three internal variables to be composed as a sum of independently evolving constituents. The evolution of internal state can also include terms that vary linearly with the external variable rates, whose presence affects the energy dissipation properties of a material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bingham, E. C., Green, H.: Paint, a plastic material not a viscous liquid; the measurement of its mobility and yield value. Proc. ASTM19, 640–664 (1919).

    Google Scholar 

  2. Hohenemser, K. von, Prager, W.: Über die Ansätze der Mechanik isotroper Kontinua. Z. Ang. Math. Mech.12, 216–226 (1932).

    Google Scholar 

  3. Oldroyd, J. G.: A rational formulation of the equations of plastic flow for a Bingham solid. Proc. Cambridge Phil. Soc.43, 100–105 (1947).

    Google Scholar 

  4. Malvern, L. E.: The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate effect. J. Appl. Mech.18, 203–208 (1951).

    Google Scholar 

  5. Odqvist, F. K. G.: Influence of primary creep on stresses in structural parts. Trans. Roy. Inst. Tech., Stockholm66, 1–17 (1953).

    Google Scholar 

  6. Stowell, E. Z.: A phenomenological relation between stress, strain rate, and temperature for metals at elevated temperatures. NACA, TN-4000, 1957.

  7. Prager, W.: Linearization in visco-plasticity. Österr. Ing. Arch.15, 152–157 (1961).

    Google Scholar 

  8. Perzyna, P.: On the constitutive equations for work-hardening and rate sensitive plastic materials. Bull. Acad. Pol. Sci., Ser. Sci. Tech.12, 199–206 (1964).

    Google Scholar 

  9. Armstrong, P. J., Frederick, C. O.: A mathematical representation of the multiaxial Bauschinger effect. CEGB, RD/B/N731, Berkeley Nuclear Laboratories, 1966.

  10. Bodner, S. R., Partom, Y.: Constitutive equations for elastic-viscoplastic strain-hardening materials. J. Appl. Mech.42, 385–389 (1975).

    Google Scholar 

  11. Hart, E. W.: Constitutive relations for the nonelastic deformation of metals. J. Eng. Mater. Technol.98, 193–202 (1976).

    Google Scholar 

  12. Kocks, U. F.: Laws for work-hardening and low-temperature creep. J. Eng. Mater. Technol.98, 76–85 (1976).

    Google Scholar 

  13. Miller, A.: An inelastic constitutive model for monotonic, cyclic, and creep deformation. Part 1. Equations development and analytical procedures. J. Eng. Mater. Technol.98, 97–105 (1976).

    Google Scholar 

  14. Ponter, A. R. S., Leckie, F. A.: Constitutive relations for the time-dependent deformation of metals. J. Eng. Mater. Technol.98, 47–51 (1976).

    Google Scholar 

  15. Chaboche, J.-L.: Viscoplastic constitutive equations for the description of cyclic and anisotropic behavior of metals. Bull. Acad. Pol. Sci., Ser. Sci. Tech.25, 33–39, 42–48 (1977).

    Google Scholar 

  16. Krieg, R. D., Swearengen, J. C., Rohde, R. W.: A physically-based internal variable model for rate-dependent plasticity. In: Inelastic behavior of pressure vessel and piping components (Chang, T. Y., Krempl, E., eds.), pp. 15–28 New York: ASME, PVP-PB-028, 1978.

    Google Scholar 

  17. Robinson, D. N.: A unified creep-plasticity model for structural metals at high temperature. ORNL, TM-5969, 1978.

  18. Chaboche, J. L., Dang Van, K., Cordier, G.: Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. (ONERA, TP 1979-109). In: SMIRT-5, Div. L, West-Berlin, Aug. 13–21, 1979.

  19. Stouffer, D. C., Bodner, S. R.: A constitutive model for the deformation induced anisotropic plastic flow of metals. Int. J. Eng. Sci.17, 757–764 (1979).

    Google Scholar 

  20. Marquis, D.: Modélisation et identification de l'écrouissage anisotrope des métaux. Ph.D. thesis, Université Pierre et Marie Curie, Paris, 1979.

    Google Scholar 

  21. Valanis, K. C.: Fundamental consequences of a new intrinsic time measure: plasticity as a limit of the endochronic theory. Arch. Mech. Stosow.32, 171–191 (1980).

    Google Scholar 

  22. Walker, K. P.: Research and development program for nonlinear structural modeling with advanced time-temperature dependent constitutive relationships. NASA, CR-165 533, 1981.

  23. Schmidt, C. G., Miller, A. K.: A unified phenomenological model for non-elastic deformation of type 316 stainless steel. Part 1. Development of the model and calculation of the material constants. Res. Mech.3, 109–129 (1981).

    Google Scholar 

  24. Chaboche, J.-L., Rousselier, G.: On the plastic and viscoplastic constitutive equations. Part 1. Rules developed with internal variable concept. J. Pressure Vessel Technol.105, 153–158 (1983).

    Google Scholar 

  25. Eisenberg, M. A., Yen, C.-F.: Application of a theory of viscoplasticity to uniaxial cyclic loading. J. Eng. Mater. Technol.105, 106–112 (1983).

    Google Scholar 

  26. Estrin, Y., Mecking, H.: A unified phenomenological description of work hardening and creep based on one-parameter models. Acta Metall.32, 57–70 (1984).

    Google Scholar 

  27. Krempl, E., McMahon, J. J., Yao, D.: Viscoplasticity based on overstress with a differential growth law for the equilibrium stress. Mech. Mater.5, 35–48 (1986).

    Google Scholar 

  28. Lowe, T. C., Miller, A. K.: Modeling internal stresses in the nonelastic deformation of metals. J. Eng. Mater. Technol.108, 365–373 (1986).

    Google Scholar 

  29. Nouailhas, D.: A viscoplastic modelling applied to stainless steel behavior. (ONERA, TP 1987-1) In: Constitutive laws for engineering materials: theory and application (Desai, C. S. et al., eds.). New York: Elsevier Applied Science 1987.

    Google Scholar 

  30. Freed, A. D., Walker, K. P.: A viscoplastic model with application to LiF-22%CaF2 hypereutectic salt. (NASA, TM-103 181, 1990). In: Constitutive laws for engineering materials: recent advances and infrastructure applications (Desai, C. S. et al., eds.), pp. 265–270. New York: ASME Press 1991.

    Google Scholar 

  31. Ramaswamy, V. G., Stouffer, D. C., Laflen, J. H.: A unified consititutive model for the inelastic response of René 80 at temperatures between 538 C and 982 C. J. Eng. Mater. Technol.112, 280–286 (1990).

    Google Scholar 

  32. Henshall, G. A., Miller, A. K.: Simplifications and improvements in unified constitutive equations for creep and plasticity. Part 1. Equations development. Acta Metall. Mater.38, 2101–2115 (1990).

    Google Scholar 

  33. Moosbrugger, J. C., McDowell, D. L.: A rate-dependent bounding surface model with a generalized image point for cyclic nonproportional viscoplasticity. J. Mech. Phys. Solids38, 627–656 (1990).

    Google Scholar 

  34. Perzyna, P.: Fundamental problems in viscoplasticity. In: Advances in applied mechanics, vol. 9 (von Mises, R., von Karman, T., eds.), pp. 243–377. New York: Academic Press 1966.

    Google Scholar 

  35. Cristescu, N., Suliciu, I.: Viscoplasticity. The Hague, Netherlands: Martinus Nijhoff 1982.

    Google Scholar 

  36. Chan, K. S., Lindholm, U. S., Bodner, S. R., Walker, K. P.: A survey of unified constitutive theories. In: Nonlinear constitutive relations for high temperature applications — 1984, pp. 1–23. NASA, CP-2369, 1984.

  37. Swearengen, J. C., Holbrook, J. H.: Internal variable models for rate-dependent plasticity: analysis of theory and experiment. Res. Mech.13, 93–128 (1985).

    Google Scholar 

  38. Miller, A. K. (ed.) Unified constitutive equations for plastic deformation and creep of engineering alloys. New York: Elsevier Applied Science 1987.

    Google Scholar 

  39. Chaboche, J.-L.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast.5, 247–302 (1989).

    Google Scholar 

  40. Lemaitre, J., Chaboche, J.-L.: Mechanics of solid materials, Chp. 6. London: Cambridge University Press 1990.

    Google Scholar 

  41. Rice, J. R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids.19, 433–455 (1971).

    Google Scholar 

  42. Malmberg, T.: Thermodynamics of a visco-plastic model with internal variables. KfK 4572, Kernforschungszentrum Karlsruhe 1990.

  43. Geary, J. A., Onat, E. T.: Representation of non-linear hereditary mechanical behavior. ORNL, TM-4525, 1974.

  44. Carathéodory, C.: Untersuchungen über die Grundlagen der Thermodynamik. Mathematische Annalen67, 355–386 (1909).

    Google Scholar 

  45. Nye, J. F.: Physical properties of crystals, Chp. 10. London: Clarendon Press 1957.

    Google Scholar 

  46. Coleman, B. D., Gurtin, M. E.: Thermodynamics with internal state variables. J. Chem. Phys.47, 597–613 (1967).

    Google Scholar 

  47. Germain, P., Nguyen, Q. S., Suquet, P.: Continuum thermodynamics. J. Appl. Mech.50, 1010–1020 (1983).

    Google Scholar 

  48. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Encyclopedia of physics (Flügge, S., ed.), Vol. 3/3, Sec. 79. New York: Springer 1965.

    Google Scholar 

  49. Onat, E. T., Fardshisheh, F.: Representation of creep of metals. ORNL, Report 4783, 1972.

  50. Lubliner, J.: On the structure of the rate equations of materials with internal variables. Acta Mech.17, 109–119 (1973).

    Google Scholar 

  51. Bever, M. B., Holt, D., Titchener, A. L.: The stored energy of cold work. In: Progress in metal science (Chalmers, B. et al., eds.), Vol. 17. Oxford: Pergamon Press 1973.

    Google Scholar 

  52. Bridgman, P. W.: Studies in large plastic flow and fracture with special emphasis on the effects of hydrostatic pressure, pp. 193–214, New York: McGraw-Hill 1952.

    Google Scholar 

  53. Prager, W.: Recent developments in the mathematical theory of plasticity. J. Appl. Phys.20, 235–241 (1949).

    Google Scholar 

  54. von Mises, R.: Mechanik der plastischen Formänderung von Kristallen. Z. Ang. Math. Mech.8, 161–185 (1928).

    Google Scholar 

  55. von Mises, R.: Mechanik der festen Körper im plastisch-deformablen Zustand. Nachr. Ges. Wiss., Göttingen, Math. Phys. Kl., 582–592 (1913).

  56. Clinard, J. A., Lacombe, C.: Determination of multiaxial flow surfaces at elevated temperatures using the concept of dissipation potential. ORNL, TM-10 787, 1988.

  57. Zener, C., Hollomon, J. H.: Plastic flow and rupture of metals. Trans. ASM33, 163–215 (1944).

    Google Scholar 

  58. Freed, A. D., Raj, S. V., Walker, K. P.: Stress versus temperature dependent activation energies in creep. (NASA, TM-103 192, 1990). To appear in: J. Eng.-Mater. Technol. (1991).

  59. Freed, A. D., Walker, K. P.: Steady-state and transient Zener parameters in viscoplasticity: drag strength versus yield strength. Appl. Mech. Rev.43, (5), S328-S337 (1990).

    Google Scholar 

  60. Bailey, R. W.: Note on the softening of strain-hardening metals and its relation to creep. J. Inst. Met.35, 27–40 (1926).

    Google Scholar 

  61. Orowan, E.: The creep of metals. J. West Scotl. Iron Steel Inst.54, 45–96 (1946–1947).

    Google Scholar 

  62. Burlet, H., Cailletaud, G.: Modeling of cyclic plasticity in finite element codes. In: Constitutive laws for engineering materials: theory and applications (Desai, C. S. et al., eds.), pp. 1157–1164. New York: Elsevier Applied Science 1987.

    Google Scholar 

  63. Freed, A. D., Walker, K. P.: Refinements in a viscoplastic model. (NASA, TM-102 338, 1989) In: Visco-plastic behavior of new materials (Hui, D., Kozik, T. J., eds.), pp 1–9. New York: ASME, PVP-184 & MD-17, 1989.

    Google Scholar 

  64. Phillips, A., Lee, C.-W.: Yield surfaces and loading surfaces: experiments and recommendations. Int. J. Solids Structures15, 715–729 (1979).

    Google Scholar 

  65. Tseng, N. T., Lee, G. C.: Simple plasticity model of two-surface type. J. Engr. Mech.109, 795–810 (1983).

    Google Scholar 

  66. McDowell, D. L.: An evaluation of recent developments in hardening and flow rules for rate-independent nonproportional cyclic plasticity. J. Appl. Mech.54, 323–333 (1987).

    Google Scholar 

  67. Voce, E.: The relationship between stress and strain for homogeneous deformation. J. Inst. Met.74, 537–562 (1948).

    Google Scholar 

  68. Krempl, E.: Inelastic work and thermomechanical coupling in viscoplasticity. In: Plasticity today: modelling, methods and applications (Sawczuk, A., Bianchi, G., eds.), pp. 247–257. New York: Elsevier Applied Science 1985.

    Google Scholar 

  69. Walker, K. P., Jordan, E. H.: Constitutive modelling of single crystal and directionally solidified superalloys. In: Turbine engine hot section technology 1987, pp. 299–301. NASA, CP 2493, 1987.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freed, A.D., Chaboche, J.L. & Walker, K.P. A viscoplastic theory with thermodynamic considerations. Acta Mechanica 90, 155–174 (1991). https://doi.org/10.1007/BF01177406

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01177406

Keywords

Navigation