Skip to main content
Log in

Chernov–Lüders bands and the Portevin–Le Chatelier effect as plastic flow instabilities

  • Physical Foundations of Strength and Plasticity
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The development of macroscopic plastic flow heterogeneities in metals in the form of Chernov–Lüders bands and the Portevin–Le Chatelier effect is studied. The main laws of deformation development in these two cases are found, and the kinetics of the motion of Chernov–Lüders band fronts and the serrated deformation during the Portevin–Le Chatelier effect is investigated. It is shown that both versions of heterogeneities can be considered as macroscopic autowave processes of switching and excitation in deformable media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Shtremel’, Strength of Alloys. Part 2. Deformation (Metallurgiya, Moscow, 1997).

    Google Scholar 

  2. L. B. Zuev, V. I. Danilov, and S. A. Barannikova, Physics of Plastic Flow Macrolocalization (Nauka, Novosibirsk, 2008).

    Google Scholar 

  3. P. Hähner, “Theory of solitary plastic waves,” Appl. Phys. A. 58 (1), 41–58 (1994).

    Article  Google Scholar 

  4. H. B. Sun, F. Yoshida, M. Ohmori, and X. Ma, “Effect of strain rate on Lüders band propagation velocity and Lüders strain for annealed mild steel under uniaxial tension,” Mat. Lett. 57 (23), 4535–4539 (2003).

    Article  Google Scholar 

  5. W. H. L. Hooper, “Dynamic strain aging bands in Al–Cu alloy, initial band formation,” J. Inst. Met. 81 (4), 563 (1952).

    Google Scholar 

  6. P. Hähner and E. Rizzi, “On the kinematics of Portevin–Le Chatelier bands: theoretical and numerical modeling,” Acta Mater. 51 (11), 3385–4018 (2003).

    Article  Google Scholar 

  7. M. Zaiser and P. Hähner, “Oscillatory modes of plastic deformation: theoretical concept,” Phys. Stat. Solid. B 199 (1), 267–330 (1997).

    Article  Google Scholar 

  8. J. F. Bell, Experimental Fundamentals of the Mechanics of Deformable Solids (Nauka, Moscow, 1984), Vol. 1.

    Google Scholar 

  9. G. A. Malygin, “Analysis of discontinuous-deformation parameters of metals at low temperatures,” Fiz. Met. Metalloved. 81 (3), 5–21 (1996).

    Google Scholar 

  10. A. A. Shibkov, A. E. Zolotov, and M. A. Zheltov, “Mechanisms of nucleation of macrolocalized deformation bands,” Izv. Ross. Akad. Nauk, Ser. Fiz. 76 (1), 5–21 (2012).

    Google Scholar 

  11. M. M. Krishtal, “Interrelation between the instability and mesoscopic nonuniformity of plastic deformation,” Fiz. Met. Metalloved. 82 (3), 89–112 (2001).

    Google Scholar 

  12. Y. Estrin and L. P. Kubin, “Plastic instabilities: phenomenology and theory,” Mater. Sci. Eng. A 137 (1), 125–134 (1991).

    Article  Google Scholar 

  13. Y. Brechet and Y. Estrin, “On the relations between Portevin Le Chatelier plastic instabilities and precipitation,” Key Eng. Mater. 97–98, 235–250 (1994).

    Article  Google Scholar 

  14. L. B. Zuev, “Crystalline body as a universal generator of localized plasticity autowaves,” Izv. Ross. Akad. Nauk, Ser. Fiz. 78 (10), 1206–1213 (2014).

    Google Scholar 

  15. L. B. Zuev, “Macroscopic physics of the plastic deformation of metals,” Usp. Fiz. Metallov 16 (1), 35–60 (2015).

    Article  Google Scholar 

  16. A. Seeger and W. Frank, “Structure formation by dissipative processes in crystals with high defect densities,” in Non-Linear Phenomena in Material Science (Trans. Tech. Publ., New York, 1987), pp. 125–138.

    Google Scholar 

  17. L. B. Zuev, V. V. Gorbatenko, and K. V. Pavlichev, “Elaboration of speckle photography techniques for plastic flow analysis,” Measur. Sci. Technol. 21 (5), 054014–054018.

  18. Ch. Vest, Holographic Interferometry (Mir, Moscow, 1982).

    Google Scholar 

  19. O. A. Plekhov, O. B. Naimark, N. Santier, and T. Palin-Luc, “Elastoplastic transition in iron: structural and thermodynamic features,” Zh. Tekh. Fiz. 79 (8), 56–61 (2009).

    Google Scholar 

  20. G. F. Xiang, Q, C. Zhang, and H. W. Lin, “Timeresolved deformation measurements of the Portevin–Le Chatelier bands,” Scripta Mater. 56, 721 (2007).

    Article  Google Scholar 

  21. L. B. Zuev, B. S. Semukhin, and E. A. Nikitin, “Localized plastic flow and space–time distribution of acoustic emission signals,” Pis’ma Zh. Tekh. Fiz. 34 (15), 70–74 (2008).

    Google Scholar 

  22. T. V. Murav’ev and L. B. Zuev, “Acoustic emission during the development of a Chernov–Lüders bandin low-carbon steel,” Zh. Tekh. Fiz. 78 (8), 135–139 (2008).

    Google Scholar 

  23. W. C. Leslie, L. J. Cuddy, and R. J. Sober, “Serrated yielding and flow in substitutional solid solution of alpha iron,” in Microstructure and Design of Alloys (University Press, Cambridge, 1973), Vol. 1, pp. 11–15.

    Google Scholar 

  24. V. I. Danilov, A. V. Bochkareva, and L. B. Zuev, “Deformation macrolocalization in a material with serrated yielding,” Fiz. Met. Metalloved. 107 (6), 660–667 (2009).

    Google Scholar 

  25. V. A. Vasil’ev, Yu. M. Romanovskii, and V. G. Yakhno, Autowave Processes (Nauka, Moscow, 1987).

    Book  Google Scholar 

  26. A. Yu. Loskutov and A. S. Mikhailov, Introduction to Synergetics (Nauka, Moscow, 1990).

    Google Scholar 

  27. E. P. Zemskov and A. Yu. Loskutov, “Oscillating traveling waves in excited media,” Zh. Eksp. Teor. Fiz. 134 (2(8)), 406–412 (2008).

    Google Scholar 

  28. Yu. V. Petrov and I. N. Borodin, “Relaxation mechanism of plastic deformation and its justification for the yield drop in whiskers,” Fiz. Tverd. Tela 57 (2), 336–341 (2015).

    Google Scholar 

  29. A. H. Cottrell, Dislocations and Plastic Flow in Crystals (Metallurgizdat, Moscow, 1958).

    Google Scholar 

  30. J. W. Martin, Precipitation Hardening (Butterworth-Heinemann, Oxford, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Zuev.

Additional information

Original Russian Text © L.B. Zuev, V.V. Gorbatenko, V.I. Danilov, 2016, published in Deformatsiya i Razrushenie Materialov, 2016, No. 8, pp. 2–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, L.B., Gorbatenko, V.V. & Danilov, V.I. Chernov–Lüders bands and the Portevin–Le Chatelier effect as plastic flow instabilities. Russ. Metall. 2017, 231–236 (2017). https://doi.org/10.1134/S0036029517040243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029517040243

Keywords

Navigation