Skip to main content
Log in

On the application of dual variables in continuum mechanics

  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Stress and strain tensors that arise in the expression of the stress power are called “conjugate variables”. More special is the term “dual variables” which has been introduced in connection with incremental constitutive relations of hypoelasticity and plasticity, where the rates of both tensors arise. We propose a rational rule from which the most natural form of tensor-valued kinematic and dynamic variables (strain and stress tensors) including their corresponding time rates can be deduced. Dual variables and their associated dual derivatives are characterized by the property that apart from the stress power also the incremental stress power is invariant under a group of transformations that corresponds to a set of physically reasonable intermediate configurations. We outline the precursory history of these concepts and then discuss in detail how the invariance properties can be realized in the various stress and strain measures. We finally demonstrate the concept in three different applications: The rate form of the principle of virtual work, the formulation of constitutive relations in viscoelasticity and the formulation of incremental constitutive assumptions of rate-independent plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ziegler, H.; MacVean, D.: On the notion of an elastic solid, in: Recent Progress in Appl. Mech., The Folke Odquist Volume, Eds. B. Broberg, J. Hult, F. Niordson, Almquist & Wiksell, Stockholm 1967, pp. 561–572

    Google Scholar 

  2. MacVean, D.: Die Elementararbeit in einem Kontinuum und die Zuordnung von Spannungs- und Verzerrungstensoren. ZAMP 19 (1968) 157–185

    Google Scholar 

  3. Hill, R.: On constitutive inequalities for simple materials-I. J. Mech. Phys. Solids 16 (1968) 229–242

    Google Scholar 

  4. Hill, R.: Aspects of Invariance in solid mechanics. Advances in Appl. Mech. Ed. C.-S. Yih, Acad. Press, New York 18 (1978) 1–75

    Google Scholar 

  5. Havner, K. S.: The theory of finite plastic deformation of crystalline solids, in: Mech. of Solids. The R. Hill 60th Anniversary Volume (Eds. H. G. Hopkins and M. J. Sewell): Pergamon Press, Oxford 1982, pp. 265–302

    Google Scholar 

  6. Thermann, K.: Foundations of large deformations, in: The Constitutive Law in Thermoplasticity, Ed. Th. Lehmann, CISM Courses and Lectures. Wien, New York: Springer 1983

    Google Scholar 

  7. Eringen, A. C.: Nonlinear theory of continuous media. New York: McGraw-Hill Book Company 1962

    Google Scholar 

  8. Oldroyd, J. G.: On the formulation of rheological equations of state. Proc. Roy. Soc. A 200 (1950) 523–541

    Google Scholar 

  9. Sedov, L. I.: Introduction to the mechanics of a continuous medium. Addison-Wesley Publishing Company, 1965

  10. Sedov, L. I.: Different definitions of the rate of change of a tensor. J. Appl. Math. Mech. (PMM) 24 (1960) 597–586

    Google Scholar 

  11. Cotter, B. A.; Rivlin, R. S.: Tensors associated with time-dependent stress. Quart. Appl. Math. 13 (1955) 177–182

    Google Scholar 

  12. Masur, E. F.: On tensor rates in continuum mechanics. ZAMP 16 (1965) 191–200.

    Google Scholar 

  13. Thomas, T. Y.: On the structure of the stress-strain relations. Proc. Nat. Acad. Sci. USA 41 (1955) 716–720

    Google Scholar 

  14. Thomas, T. Y.: Kinematically preferred coordinate systems. Proc. Nat. Sci. USA 41 (1955) 762–770

    Google Scholar 

  15. Naghdi, P. M.; Wainwright, W. L.: On the time derivative of tensors in mechanics of continua. Quart. Appl. Math. 19 (1960) 95–109

    Google Scholar 

  16. Marsden, J. E.; Hughes, T. J. R.: Topics in the mathematical foundations of elasticity. In: Nonlinear analysis and mechanics: Heriot-Watt Symposium. Vol. II, Ed. R. J. Knops, Pitman, London-San Francisco-Melbourne, 1978, pp. 30–269

    Google Scholar 

  17. Prager, W.: An elementary discussion of definitions of stress rate. Quart. Appl. Math. 18 (1961) 403–407

    Google Scholar 

  18. Prager, W.: On higher rates of stress and deformation. J. Mech. Phys. Sol. 10 (1962) 133–138

    Google Scholar 

  19. Truesdell, C.: The simplest rate theory of pure elasticity. Comm. Pure Appl. Math. 8 (1955) 123–132

    Google Scholar 

  20. Green, A. E.; McInnis, M. C.: Generalized hypo-elasticity. Proc. Roy. Soc. Edinburgh A 57 (1967) 220–230

    Google Scholar 

  21. Nagtegaal, J. C.; De Jong, J. E.: Some aspects of non-isotropic workhardening in finite strain plasticity. In: Plasticity of metals at finite strain (Theory, Experiment and Computation). Eds. E. H. Lee and R. L. Mallet, Div. Appl. Mech. Stanford Univ. and Dept. of Mech. Eng., Rensselaer Polytechnic Inst., 1982, pp. 65–106

  22. Lehmann, Th.: Einige Bemerkungen zu einer allgemeinen Klasse von Stoffgesetzen für große elasto-plastische Formänderungen. Ing.-Arch. 41 (1972) 297–310

    Google Scholar 

  23. Dienes, J. K.: On the analysis of rotation and stress rate in deforming bodies. Acta Mech. 32 (1979) 217–232

    Google Scholar 

  24. Bird, R. B.; Armstrong, R. C.; Hassager, O.: Dynamics of polymeric liquids. Vol. 1, John Wiley & Sons, New York, 1977

    Google Scholar 

  25. Lee, E. H.; Mallett, R. L.; Werthermer, T. B.: Stress analysis for anisotropic hardening in finite-deformation plasticity. J. Appl. Mech. 50 (1983) 554–560

    Google Scholar 

  26. Dafalias, Y. F.: Corotational rates for kinematic hardening at large plastic deformations. J. Appl. Mech. 50 (1983) 561–565

    Google Scholar 

  27. Lodge, A. S.: Body tensor-fields in continuum mechanics. Academic Press, New York, San Francisco, London, 1974

    Google Scholar 

  28. Lodge, A. S.: Elastic liquids. Academic Press, London, New York, 1964

    Google Scholar 

  29. Lehmann, Th.: Some aspects of non-isothermic large inelastic deformations. Sol. Mech. Arch. 3 (1978) 261–317.

    Google Scholar 

  30. Lee, E. H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36 (1969) 1–6.

    Google Scholar 

  31. Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4 (1960) 273–334

    Google Scholar 

  32. Raniecki, B.; Thermann, K.: Infinitesimal thermoplasticity and kinematics of finite elastic-plastic deformations; Mitt. aus dem Institut für Mechanik, Ruhr-Universität, Bochum, BRD, Nr. 2, 1978

    Google Scholar 

  33. Green, A. E.; Naghdi, P. M.: A general theory of an elastic-plastic continuum. Arch. Ration. Mech. Anal. 18 (1965) 251–281

    Google Scholar 

  34. Budiansky, B.: Remarks on theories of solid and structural mechanics. In: Problems of hydrodynamics and continuum mechanics. Edited by M. A. Lavrent'ev et al., SIAM, Philadelphia, 1969, pp. 77–83

    Google Scholar 

  35. Hutchinson, J. W.: Finite strain analysis of elastic-plastic solids and structures. In: Numerical solution of nonlinear structural problems. Edited by R. F. Hartung, ASME (1973), pp. 17–29

  36. Haupt, P.; Tsakmakis, Ch.: On the principle of virtual work and rate independent plasticity. Arch. Ration. Mech. Anal. 40 (1988) 395–406

    Google Scholar 

  37. Tsakmakis, Ch.; Korzen, M.: On the representation of kinematic hardening at finite strain. (to appear)

  38. Sidoroff, F.: The geometrical concept of intermediate configuration and elasticplastic finite strain. Arch. of Mech. 25 (1973) 299–308

    Google Scholar 

  39. Kleiber, M.: Kinematics of deformation processes in materials subjected to finite elastic-plastic strains. Int. J. Eng. Sci. 13 (1975) 513–525

    Google Scholar 

  40. Haupt, P.: On the concept of an intermediate configuration and its application to a representation of viscoelastic-plastic material behaviour. Int. J. of Plasticity 1 (1985) 303–316

    Google Scholar 

  41. Haupt, P.; Tsakmakis, Ch.: On kinematic hardening and large plastic deformations. Int. J. of Plasticity 2 (1986) 279–293

    Google Scholar 

  42. Tsakmakis, Ch.: Über inkrementelle Materialgleichungen zur Beschreibung großer inelastischer Deformationen. Fortschrittsber. VDI, Reihe 18 Nr. 36, VDI Verlag, Düsseldorf 1986

    Google Scholar 

  43. Paulun, J. E.; Pecherski, R. B.: On the application of the plastic spin concept for the description of anisotropic hardening in finite deformation plasticity. Int. J. of Plasticity 3 (1987) 303–314

    Google Scholar 

  44. Zbib, H. M.; Aifantis, E. C.: On the concept of relative and plastic spins and its implications to large deformation theories. Acta Mech. 75 (1988) 15–33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors want to thank Professors Kolumban Hutter and Ingo Müller for valuable and most stimulating comments

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haupt, P., Tsakmakis, C. On the application of dual variables in continuum mechanics. Continuum Mech. Thermodyn 1, 165–196 (1989). https://doi.org/10.1007/BF01171378

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01171378

Keywords

Navigation