Skip to main content
Log in

CdS nanoclusters stabilized by thiolate ligands: A mini-review

  • Review
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

One of the most exciting frontiers in materials chemistry in recent years is the optoelectronics of “quantum-confined” semiconductor nanoclusters. These nanoclusters are ∼ 10–200 A in diameter, and in this size regime exhibit extra-ordinarily interesting quantum mechanical effects. Cadmium sulfide is a popular semiconductor for these studies, and reviewed here is the synthesis and charac-terization of such CdS nanoclusters, with emphasis on how chemical control of the surface by thiolates influences product formation and properties. Also described are the syntheses and structures of true molecular clusters of CdS capped with thiolate ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Rauh,in H. O. Finklea (ed.),Semiconductor Electrodes (Elsevier, Amsterdam, 1988, pp. 277–327.

    Google Scholar 

  2. M. L. Steigerwald and L. E. Brus (1990.Acc. Chem. Res. 23, 183; (b) G. D. Stucky and J. E. MacDougall (1990).Science 247, 669: (c) Y. Wang and N. Herron (1991).J. Phys. Chem. 95, 525: (d) H. Weller (1993).Angew. Chem. Int. Ed. Engl. 32, 41: (e) H. Weller(1993).Adv. Mater. 5, 88.

    Google Scholar 

  3. L. Spanhel, M. Haase, H. Weller, and A. Henglein (1987).J. Am. Chem. Soc. 109, 5649.

    Google Scholar 

  4. E. S. Smothin, R. M. Brown, Jr., L. K. Rabenberg, K. Salomon, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber, and J. M. White (1990).J. Phys. Chem. 94, 7543.

    Google Scholar 

  5. N. Herron, Y. Wang, M. M. Eddy, G. D. Stucky, D. Cox, K. Moller, and T. Bein (1989).J. Am. Chem. Soc. 111, 350.

    Google Scholar 

  6. K. M. Choi and K. J. Shea (1994).J. Phys. Chem. 98, 3207; (b) H. Mathieu, T. Richard, J. Allegre, P. Lefebvre, G. Arnaud, W. Granier, L. Boudes, J. L. Marc, A. Pradel, and M. Ribes (1995).J. Appl. Phys. 77, 287.

    Google Scholar 

  7. M. P. Pileni, L. Motte, and C. Petit (1992)Chem. Mater. 4, 338.

    Google Scholar 

  8. X. K. Zhao, S. Barai, R. Rolandi, and J. H. Fendler (1988)J. Am. Chem. Soc. 110, 1012.

    Google Scholar 

  9. V. Swayambunathan, D. Hayes, K. H. Schmidt, Y. X. Liao, and D. Meisel (1990).J. Am. Chem. Soc. 112, 3831.

    Google Scholar 

  10. R. P. Andres, R. S. Averback, W. L. Brown, L. E. Brus, W. A. Goddard, III, A. Kaldor, S. G. Louie, M. Moscovits, P. S. Peercy, S. J. Riley, R. W. Siegel, F. Spaepen, and Y. Wang (1989.J. Mater. Res. 4, 704.

    Google Scholar 

  11. For example, see R. Mahtab, J. P. Rogers, and C. J. Murphy (1995).J. Am. Chem. Soc. 117, 9099.

    Google Scholar 

  12. C. B. Murray, D. J. Norris, and M. G. Bawendi (1993).J. Am. Chem. Soc. 115, 8706.

    Google Scholar 

  13. C.-H. Fischer, H. Weller, L. Katsikas, and A. Henglein (1989).Langmuir 5, 429.

    Google Scholar 

  14. A. Eychmuller, L. Katsikas, and H. Weller (1990).Langmuir 6, 1605.

    Google Scholar 

  15. Y. Nosaka, K. Yamaguchi, H. Miyama, and H. Hiayash (1988).Chem. Lett. 605.

  16. D. Hayes, O. I. Micic, M. T. Nenadovic, V. Swayambunathan, and D. Meisel (1989).J. Phys. Chem. 93, 4603.

    Google Scholar 

  17. V. Swayanabunathan, D. Hayes, K. H. Schmidt, Y. X. Liao, and D. Meisel (1990).J. Am. Chem. Soc. 112, 3831.

    Google Scholar 

  18. A. Chemseddine and H. Weller (1993).Ber. Bunsenges. Phys. Chem. 97, 636.

    Google Scholar 

  19. T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, K. Diesner, A Chemseddine, A. Eychmuller, and H. Weller (1994).J. Phys. Chem. 98, 7665.

    Google Scholar 

  20. C. H. Fischer and A. Henglein (1989).J. Phys. Chem. 93, 5578.

    Google Scholar 

  21. N. Herron, Y. Wang, and H. Eckert (1990).J. Am. Chem. Soc. 112, 1322.

    Google Scholar 

  22. T. Ogata, H. Hosokawa, T. Oshiro, Y. Wada, T. Sakata, H. Mori, and S. Yanagida (1992).Chem. Lett. 1665.

  23. Y. Nosaka, N. Ohta, T. Fukuyama, and N. Fuji (1993).J. Colloid Interfac. Sci. 155, 23.

    Google Scholar 

  24. H. Noglik and W. J. Pictro (1994).Chem. Mater. 6, 1593.

    Google Scholar 

  25. L. E. Brus (1984).J. Chem. Phys. 80, 4403.

    Google Scholar 

  26. For example, see P. E. Lippens and M. Lannoo (1989).Phys. Rev. B 39, 10935.

    Google Scholar 

  27. P. Strickler (1969).J. Chem. Soc. Chem. Commun. 655: (b) H.-B. Burgi (1974).Helv. Chim. Acta 57, 513.

  28. H.-B. Burgi, H. Gehrer, P. Strickler, and F. K. Winkler (1976).Helv. Chim. Acta 59, 2558.

    Google Scholar 

  29. I. G. Dance, A. Choy, and M. L. Scudder (1984),J. Am. Chem. Soc. 106, 6285.

    Google Scholar 

  30. K. S. Hagen and R. H. Hohn (1983).Inorg. Chem. 22, 3171: (b) P. A. W. Dean and J. J. Vittal (1986).Inorg. Chem. 25, 514.

    Google Scholar 

  31. G. H. S. Lee, D. C. Craig, I. Ma. M. L. Scudder, T. D. Bailey, and I. G. Dance (1988).J. Am. Chem. Soc. 110, 4863.

    Google Scholar 

  32. N. Herron, J. C. Calabrese, W. E. Farneth, and Y. Wang (1993).Science 259, 1426.

    Google Scholar 

  33. T. Vossmeyer, G. Reck, L. Katsikas, E. T. K. Haupt, B. Schultz, and H. Weller (1995).Science 267, 1476.

    Google Scholar 

  34. L.-T. Cheng, N. Herron, and Y. Wang (1989).J. Appl. Phys. 66, 3417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, C.J. CdS nanoclusters stabilized by thiolate ligands: A mini-review. J Clust Sci 7, 341–350 (1996). https://doi.org/10.1007/BF01171187

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01171187

Key words

Navigation