Skip to main content
Log in

Global and local relative convexity and oriented relative convexity; application to molecular shapes in external fields

  • Papers
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The concepts of global and local relative convexity and oriented relative convexity are described and proposed as tools for the characterization of molecular shapes. The usual concept of convexity is a special case of the generalization described. Oriented relative convexity is suitable for the characterization of molecular shapes in external fields, such as magnetic fields or fields representing cavity regions of various enzymes or zeolite catalysts. Potential applications include new approaches to computer-based drug design and molecular engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.M. Yaglom and V.G. Boltyanskii,Convex Figures (Holt, Rinehart and Winston, New York, 1961).

    Google Scholar 

  2. A.V. Pogorelov,Extrinsic Geometry of Convex Surfaces (Amer. Math. Soc., Providence R.I., 1973).

    Google Scholar 

  3. W. Graham Richards,Quantum Pharmacology, 2nd Ed. (Butterworth, London, 1983).

    Google Scholar 

  4. P.A. Kollman, Ace. Chem. Res. 10(1977)365.

    Google Scholar 

  5. A. Verloop and J. Tipker, A comparative study of new steric parameters in drug design, in:Biological Activity and Chemical Structure, ed. J.A. Keverling Buisman, Pharmacochemical Library, Vol. 2 (Elsevier, Amsterdam, 1977).

    Google Scholar 

  6. R. Franke,Theoretical Drug Design Methods, Pharmacochemical Library, Vol. 7 (Elsevier, Amsterdam, 1977).

    Google Scholar 

  7. G.M. Maggiora and R.E. Christoffersen, Quantum mechanical approaches to the study of enzymic transition states and reaction paths, in:Transition States in Biochemical Processes, ed. R.D. Gandour and R.L. Schowen (Plenum, New York, 1978).

    Google Scholar 

  8. M.A. Johnson, V. Nicholson, M. Naim and C.-C. Tsai, in:QSAR in Drug Design and Toxicology, ed. D. Hadzi and B. Jerman-Blazic (Elsevier, Amsterdam, 1987).

    Google Scholar 

  9. A.J. Stuper, W.E. Brügger and P.C. Jurs,Computer-Assisted Studies of Chemical Structure and Biological Function (Wiley, New York, 1979).

    Google Scholar 

  10. J. Tomasi, On the use of electrostatic molecular potentials in theoretical investigations on chemical reactivity, in:Quantum Theory of Chemical Reactions, Vol. 1, ed. R. Daudel, A. Pullman, L. Salem and A. Veillard (Reidel, Dordrecht, 1979).

    Google Scholar 

  11. Y.C. Martin,Quantitative Drug Design: A Critical Introduction (Dekker, New York and Basel, 1978).

    Google Scholar 

  12. I. Motoc, Steric and other structural parameters for QSAR, in:Steric Fit in Quantitative Structure-Activity Relationships, ed. A.T. Balaban, A. Chiriac, A. Motoc and Z. Simon, Lecture Notes in Chemistry, No. 15 (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  13. R. Carbó, L. Leyda and M. Arnau, Int. J. Quant. Chem. 17 (1980)1185.

    Google Scholar 

  14. G. Náray-Szabó, A. Grofcsik, K. Kosa, M. Kubinyi and A. Martin, J. Comput. Chem. 2(1981)58.

    Google Scholar 

  15. H. Weinstein, R. Osman, J.P. Green and S. Topiol, Electrostatic potentials as descriptors of molecular reactivity, in:Chemical Applications of Atomic and Molecular Electrostatic Potentials, ed. P. Politzer and D.G. Truhlar (Plenum, New York, 1981) pp. 309–334.

    Google Scholar 

  16. A. Warshel, Ace. Chem. Res. 14(1981)284.

    Google Scholar 

  17. P.H. Reggio, H. Weinstein, R. Osman and S. Topiol, Int. J. Quant. Chem. Quant. Biol. Symp. 8(1981)373.

    Google Scholar 

  18. M.L. Connolly, J. Mol. Graph 3(1985)19.

    Google Scholar 

  19. R.P. Sheridan, R. Nilakantan, J.D. Scott and R. Venkataraghavan, J. Med. Chem. 29(1986)899.

    PubMed  Google Scholar 

  20. J.C. Culberson, G.D. Purvis III, M.C. Zerner and B.A. Seiders, Int. J. Quant. Chem. Quant. Biol. Symp. 13(1986)267.

    Google Scholar 

  21. S.D. Kahn, C.F. Pau, L.E. Overman and W.J. Hehre, J. Amer. Chem. Soc. 108(1986)7381.

    Google Scholar 

  22. G. Náray-Szabó and P.R. Surján, Computational methods for biological systems, in:Theoretical Chemistry of Biological Systems, ed. G. Náray-Szabó, Studies in Physical and Theoretical Chemistry, Vol. 41 (Elsevier, Amsterdam, 1986) pp. 1–100.

    Google Scholar 

  23. J. Aqvist and O. Tapia, J. Mol. Graph 5(1987)30.

    Google Scholar 

  24. P.G. Mezey, Int. J. Quant. Chem. Quant. Biol. Symp. 12(1986)113.

    Google Scholar 

  25. P.G. Mezey, J. Comput. Chem. 8(1987)462.

    Google Scholar 

  26. P.G. Mezey, Int. J. Quant. Chem. Quant. Biol. Symp. 14(1987)127.

    Google Scholar 

  27. G.A. Arteca and P.G. Mezey, Int. J. Quant. Chem. Quant. Biol. Symp. 14(1987)133.

    Google Scholar 

  28. G.A. Arteca, V. Jammal, P.G. Mezey, J.S. Yadav, M.A. Hermsmeyer and T. Gund, J. Mol. Graph 6(1988) 45.

    Google Scholar 

  29. E.H. Spanier,Algebraic Topology (MacDraw-Hill, New York, 1966).

    Google Scholar 

  30. M. Greenberg,Lectures on Algebraic Topology (Benjamin, New York, 1967).

    Google Scholar 

  31. S.-T. Hu,Elements of General Topology (Holden-Day, San Francisco, 1969).

    Google Scholar 

  32. J. Vick,Homology Theory (Academic Press, New York, 1973).

    Google Scholar 

  33. P.G. Mezey, J. Math. Chem. 2(1988)299.

    Google Scholar 

  34. P.G. Mezey, Theor. Chim. Acta 54(1980)95.

    Google Scholar 

  35. P.G. Mezey, Theor. Chim. Acta 63(1983)9.

    Google Scholar 

  36. P.G. Mezey,Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987).

    Google Scholar 

  37. G.A. Arteca and P.G. Mezey, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mezey, P.G. Global and local relative convexity and oriented relative convexity; application to molecular shapes in external fields. J Math Chem 2, 325–346 (1988). https://doi.org/10.1007/BF01166299

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01166299

Keywords

Navigation