Skip to main content
Log in

The role of Fe2+ and Fe3+ in synthetic Fe-substituted tetrahedrite

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Tetrahedrites with the composition between Cu12Sb4S13 and Cu10Fe2Sb4S13 were synthesized at 457 °C and 500 °C from the elements and carefully studied by Mössbauer spectroscopy of57Fe. Between Cu12Sb4S13 and Cu11Fe1Sb4S13 iron is predominantly ferric. Between Cu11Fe1Sb4S13 and Cu10Fe2Sb4S13 iron is predominantly ferrous and occupies the tetrahedral M1-sites.

Zusammenfassung

Die Rolle von Fe2+ und Fe3+ in synthetischen Tetraedriten mit Fe-Substitution Tetraedrite mit einer Zusammensetzung zwischen Cu12Sb4S13 and Cu10Fe2Sb4S13 wurden bei 457 °C und 500 °C aus den Elementen synthetisiert und sorgfdltig mit Mössbauer-Spektroskopie von57Fe untersucht. Zwischen Cu12Sb4S13 and Cu11Fe1Sb4S13 ist Eisen überwiegend dreiwertig. Zwischen Cu11Fe1Sb4S13 and Cu11Fe2Sb4S13 ist Eisen überwiegend zweiwertig und besetzt die tetraedrisch koordinierten M1-Plätze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amthauer G, Bente K (1983) Mixed valent iron in synthetic rasvumite, KFe2S3. Naturwissenschaften 70: 146–147

    Google Scholar 

  • Charnock JM, Garner CD, Pattrick RAD, Vaughan DJ (1989 a) EXAFS and Mössbauer spectroscopic study of Fe-bearing tetrahedrites. Mineral Mag 53: 193–199

    Google Scholar 

  • ——, ——, ——, —— (1989 b) Coordination sites of metals in tetrahedrite minerals determined by EXAFS. J Solid Chem 82, 279–289.

    Google Scholar 

  • Forcher K, Lottermoser W, Amthauer G (1988) Mössbauer study of raguinite, TlFeS2, und thalcusite, Cu3T12FeS4. N Jb Mineral Abh 160: 25–28

    Google Scholar 

  • Greenwood NN, Whitfield HJ (1968) Mössbauer effect studies on cubanite (CuFe2S3) and related iron sulphides. J Chem Soc (A) 1697–1699

  • Hall AJ, Cervelle B, Levy C (1974) The effect of substitution of Cu by Zn, Fe and Ag on the optical properties of synthetic tetrahedrite, CU12Sb4S13. Bull Soc fr Mineral Cristallogr 97: 18–26

    Google Scholar 

  • Johnson ML, Burnham CW (1985) Crystal structure refinement of an arsenic-bearing argentian tetrahedrite. Amer Mineral 70: 165–170

    Google Scholar 

  • Johnson NE, Craig JR, Rimstidt JD (1988) Crystal chemistry of tetrahedrite. Amer Mineral 73: 389–397

    Google Scholar 

  • Karup-Moller S, Makovicky E, Pilström G (1989) Mineralogy of the sulphosalt zone at the Langdal deposit, Boliden district, Northern Sweden. N Jb Mineral Abh 160: 299–327

    Google Scholar 

  • Kawai S, Ito Y, Kiriyama R (1972) Magnetic susceptibility, Mössbauer effect and conductivity in sphalerite and tetrahedrite (in Japanese). J Mineral Soc Japan 10: 487–498

    Google Scholar 

  • Lind IL, Makovicky E (1982) Phase relations in the system Cu-Sb-S at 200°C, 108Pa by hydrothermal synthesis. Microprobe analyses of tetrahedrite-a warning. N Jb Mineral Abh 145: 134–156.

    Google Scholar 

  • O'Leary MJ, Sack RO (1987) Fe-Zn exchange reaction between tetrahedrite and sphalerite in natural environments. Contrib Mineral Petrol 96: 415–425

    Google Scholar 

  • Makovicky E, Skinner BJ (1978) Studies of the sulphosalts of copper VI. Low-temperature exsolution in synthetic tetrahedrite solid solution, Cu12+xSb4+yS13. Can Mineral 16: 611–623

    Google Scholar 

  • ——, —— (1979) Studies of the sulphosalts of copper VII. Crystal structures of the exsolution products Cu12.3Sb4S13 and Cu13.8Sb4S13 of unsubstituted synthetic tetrahedrite. Can Mineral 17: 619–634

    Google Scholar 

  • Mozgova NN, Tsepin AT (1983) Fahlores (chemical composition and properties) (in Russian). Nauka, Moscow.

    Google Scholar 

  • Pattrick RAD, Hall AJ (1983) Silver substitution into synthetic zinc, cadmium and iron tetrahedrites. Mineral Mag 47: 441–451

    Google Scholar 

  • Peterson RC, Miller T (1986) Crystal structure and cation distribution in freibergite and tetrahedrite. Mineral Mag 50: 717–721

    Google Scholar 

  • Sack RO, Loucks RR (1985) Thermodynamic properties of tetrahedrite-tennantites: constraints on the interdependence of the Ag-Cu, Fe-Zn, Cu-Fe, and As-Sb exchange reactions. Amer Mineral 70: 1270–1289

    Google Scholar 

  • Shannon RD (1981) Bond distance in sulphides and a preliminary table of sulphide crystal radii. Structure and Bonding in Crystals 2: 53–70

    Google Scholar 

  • Tatsuka K, Morimoto N (1977) Tetrahedrite stability relations in the Cu-Fe-Sb-S system. Amer Mineral 62: 1101–1109

    Google Scholar 

  • Vaughan DJ, Burns RG (1972) Mössbauer spectroscopy and bonding in sulphide minerals containing four-coordinated iron. 24th Int Geol Congress Montreal, 1972, Sect 14: 158–167

  • Wu I, Peterson U (1977) Geochemistry of tetrahedrite and mineral zoning at Casapalca, Peru. Econ Geol 72: 993–1016

    Google Scholar 

  • Wuensch BJ (1964) The crystal structure of tetrahedrite, Cu12Sb4S13. Z Kristallogr 119: 437–453

    Google Scholar 

  • Wuensch BJ, Takeuchi Y, Nowacki W (1966) Refinement of the crystal structure of binnite, Cu12As4S13. Z Kristallogr 123: 1–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makovicky, E., Forcher, K., Lottermoser, W. et al. The role of Fe2+ and Fe3+ in synthetic Fe-substituted tetrahedrite. Mineralogy and Petrology 43, 73–81 (1990). https://doi.org/10.1007/BF01164223

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164223

Keywords

Navigation