Skip to main content
Log in

Synthetic zeolites formed from expanded perlite: Type, formation conditions and properties

Zeolithsynthese aus Blähperlit—Art, Bildungsbedingungen und Eigenschaften

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The starting material used was expanded perlite with a grain size < 40 μm (74.5 wt.% SiO2; 12.5 wt.% Al2O3). This material is a waste product obtained during the production of expanded perlite. The experiments were carried out with KOH solutions, mixtures of KOH and NaOH solutions (1:1) as well as NaOH solutions in the concentration range 0.5 N to 6.0 N at temperatures of between 100° and 140°C and with reaction periods of 2 hours to 13 days in closed system. In the experiments with KOH containing solutions zeolite ZK-19 (phillipsite), W (merlinoite), G (chabazite) and F (edingtonite) formed. Without addition of aluminium high percentages of zeolite ZK-19 (80–100 wt.%) and zeolite W (90–100 wt.%) were obtained. The addition of aluminium rendered possibly the formation of 90 to 100 wt.% of zeolite G and 85 to 100 wt.% of zeolite F, respectively. In the experiments with NaOH solutions analcime, zeolite Na-Pc (gismondine), zeolite HS (sodalite hydrate) and zeolite A formed. High percentages of zeolite Na-Pc (90–100 wt.%), zeolite HS (up to 100 wt.%) and analcime (up to 100 wt.%) were synthesized without addition of aluminium. The formation of high percentages of zeolite A (95–100 wt.%), however, needs the addition of aluminium, NaCI and seed crystals. The temperature stability of the zeolites decreases in the following sequence: K-F > K-W ≧ K-ZK-19 ≧ (Na), K-W ≧ Na, K-F ≧ Gsi-rich ≧ (Na), K-ZK-19 >> Na-Pc ≊ Gsi-poor. Zeolite A has a very good temperature stability up to temperatures of } 550 °C similar to that of zeolite K-W. At higher temperatures, however, its stability is very poor. The NH4 +-exchange capacities (meq/g) of the different zeolites amount to the following values: ZK-19:2.8 - 3.2; W:3.0 - 3.2; G:2.3 - 3.6; A:3.1 - 3.2; Na-Pc:3.5 - 3.6; F : 3.9 - 4.8.

Zusammenfassung

Ausgangsmaterial der experimentellen Untersuchungen war Blähperlit mit einer Korngröße < 40 ,μm (74,5 Gew.-% SiO2; 12,5 Gew.-% Al2O3). Dieses Material ist ein Abfallprodukt, das bei der Produktion von Blähperlit anfällt. Die Experimente wurden mit KOH-Lösungen, Lösungsgemischen aus KOH und NaOH (1:1) sowie mit NaOH-Losungen im Konzentrationsbereich 0,5 n-6,0 n bei Temperaturen von 100° – 140°C und über Reaktionszeiten von 2 Stunden bis zu 13 Tagen im geschlossenen System durchgeführt. In den Experimenten mit KOH-hältigen Lösungen bildeten sich die Zeolithe ZK-19 (Phillipsit), W (Merlinoit), G (Chabasit) und F (Edingtonit). Hohe Prozentgehalte an Zeolith ZK-19 (80 – 100 Gew.-%) und Zeolith W (90–100 Gew.-%) entstehen nur ohne Zugabe von Aluminium. Die Bildung von 90–100 Gew.-% Zeolith G bzw. 85–100 Gew. % Zeolith F ist dagegen durch die Zugabe von Aluminium möglich. In den Experimenten mit NaOH-Lösungen bildeten sich die Zeolithe Analcim, Na-Pc (Gismondin), HS (Sodalithhydrat) und Zeolith A. Hohe Prozentanteile an Zeolith Na-Pc (90–100 Gew.-%), HS (bis zu 100 Gew. %) und Analcim (bis zu 100 Gew.-%) wurden ohne Aluminium-Zugabe synthetisiert. Die Bildung von hohen Gehalten an Zeolith A (95–100 Gew. %) ist jedoch nur unter Zugabe von Aluminium, NaCl und Kristallkeimen möglich.

Die Temperaturbeständigkeit der Zeolithe nimmt in der folgenden Reihenfolge ab: K-F > K-W ≧- K-ZK-19 ≧ (Na), K-W ≧ Na, K-F ≧ Gsi-reich ≧ (Na), K-ZK-19 >> Na-Pc ≊ Gsi-am. Zeolith A weist bis zu Temperaturen von etwa 550°C eine gute Temperaturbeständigkeit auf, die in etwa der von Zeolith K-W entspricht. Bei höheren Temperaturen ist die Beständigkeit jedoch sehr gering.

Die NH4+-Austauschkapazitäten (mÄqu/g) der verschiedenen Zeolithe erreichen folgende Werte: ZK-19:2,8 - 3,2; W:3,0 - 3,2; G:2,3 - 3,6; A:3,1 - 3,2; Na-Pc:3,5 -3,6; F:3,9 - 4,8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiello R, Colella C, Nastro A, Sersale R (1984) Self-bonded phillipsite pellets from trachytic products. In:D Olson and A Bisio (eds), Proc Sixth International Zeolite Conference, Butterworths, pp 957–965

  • Aiello R, Nastro A, Crea F, Colella C (1982) Use of natural products for zeolite synthesis. V. Self-bonded zeolite pellets from rhyolitic pumice. Zeolites 4: 290–294

    Google Scholar 

  • Antonucci PL, Crisafulli ML, Giordano N, Burriesci N (1985a) Rate-controlling step in the hydrothermal synthesis of zeolites from Sardinian perlite. Material Letters 3, 5, 6: 230–234

    Google Scholar 

  • Antonucci PL, Crisafulli ML, Giordano N, Burriesci N (1985b) Zeolitization of perlite. Material Letters 3, 7, 8: 302–307

    Google Scholar 

  • Barrer RM, Baynham JW (1956) The hydrothermal chemistry of the silicates. Part VII. Synthetic potassium alumosilicates. J Chem Soc 1956: 2882–2891

    Google Scholar 

  • {Barrer RM, Marcilly C}

  • Barrer RM, Munday BM (1971) Cation exchange in the synthetic zeolite K-F. J Chem Soc 1971: 2914–2921

    Google Scholar 

  • Barrer RM, Mainwaring DE (1972) Chemistry of soil minerals. Part XIII. Reactions of metakaolinite with single and mixed bases. J Chem Soc 1972: 2534–2546

    Google Scholar 

  • Barth-Wirsching U, Höller H (1989) Experimental studies on zeolite formation conditions. Eur J Mineral 1989: 489–506

    Google Scholar 

  • Beard WC (1971) Linde type B zeolites and related mineral and synthetic phases. In: Gould RF (ed) Advances in Chemistry Series 101, Molecular Sieve Zeolites-I. American Chemical Society, Washington, pp 237–249

    Google Scholar 

  • Burriesci N, Crisafulli ML, Giordano N, Bart JCJ, Polizzotti G (1984) Hydrothermal synthesis of zeolites from low-cost natural silica-alumina sources. Zeolites 1984 (4): 384–388

    Google Scholar 

  • Burriesci N, Crisafulli M, Giordano N, Antonucci PL (1986) Iron-free zeolites from Lipari pumice. Zeolites 6: 119–124

    Google Scholar 

  • Ciambelli P, Porcelli C, Valentino R (1980) Physico-chemical properties of sedimentary chabazite from Central Southern Italy. In:Rees LV (ed) 5th International Congress on Zeolites. Heyden, London, pp 119–128

  • Ciambelli P, Corbo P, Liberti L, Lopez A (1988) Ammonium recovery from urban sewage by natural zeolites. In:Kallo D, Sherry HS (eds) Occurrence, Properties and Utilization of Natural Zeolites. Akademiai Kiado, Budapest, pp 501–509

    Google Scholar 

  • Colella C, Aiello R, di Ludovico V (1977) Sulla merlinoite sintetica. Rendiconti, Societa Italiana di Mineralogia e Petrologia 33 (2): 511–518

    Google Scholar 

  • Colella C, Aiello R, Nastro A (1984) Evaluation of phillipsite tuff for the removal of ammonia from aqua cultural wastewaters. In:Pond WG, Mumpton FA (eds) Zeo-Agriculture. Westview Press, Boulder, Colorado, pp 239–244

    Google Scholar 

  • Donahoe RJ, Liou JG, Guldman S (1984) Synthesis and characterization of zeolites in the system Na20-K2O-Al2O3-Si02-H2O. Clays and lay Minerals 32,6: 433–443

    Google Scholar 

  • Donevska S, Tanevski J, Daskalova N (1985) Synthesis of zeolite A from silicate raw materials and its application in formulations of detergents. In:Drzaj B, Hocevar H, Pejovnik S (eds) Zeolites, Synthesis, Strcuture, Technology and Application. Elsevier, Amsterdam Oxford New York Tokyo, pp 579–584

    Google Scholar 

  • Giordano N, Recupero V, Pino L, Bart JCJ (dy1987) Zeolitisation of perlite. Industrial Minerals: 83–95

  • Höller H, Wirsching U (1985) Zeolite formation from fly ash. Fortschr Miner 63 (1): 21–43

    Google Scholar 

  • Kühl GH (1969) Synthetic phillipsite. Am Mineral 54: 1607–1612

    Google Scholar 

  • Mondale KD, Mumpton FA, Aplan FF (1978) Benefication of natural zeolites from Bowie, Arizone. In:Sand LB, Mumpton FA (eds) Natural Zeolites. Pergamon Press, Oxford New York, pp 527–537

    Google Scholar 

  • Ottana R, Saija LM, Burriesci N, Giordano N (1982) Hydrothermal synthesis of zeolites from pumice in alkaline and saline environment. Zeolites 2: 295–289

    Google Scholar 

  • Sherman JD (1977) Identification and characterization of zeolites synthetisized in the K20-A1203-SiO2-H20 system. In:Katzer J (ed) Am Chem Soc Symposium Series, Molecular Sieves. II, 40: 30–42

  • Sherman JD, Ross RJ (1980) Selective NH4 +-ion exchange with Linde F and W zeolite molecular sieves. In:Rees LV (ed) Proc 5th Int Conference on Zeolites. Heyden, London Philadelphia, pp 823–831

  • Stamboliev Ch, Scpova N, Bergk K-H, Porsch M (1985) Synthesis of zeolite A and P from natural and waste materials. In:Drzaj B, Hocevar S, Pejovnik S (eds) Zeolites, Synthesis, Structure, Technology and Application. Elsivier, Amsterdam, pp 155–160

    Google Scholar 

  • Subotic B, Masic N, Smit J (1985) Analysis of particulate processes during the transformation of zeolite A into hydroxysodalite. In:Drzaj B, Hocevar S, Pejovnik S (eds) Zeolites, Synthesis, Structure, Technology and Application. Elsivier, Amsterdam, pp 207–214

    Google Scholar 

  • Subotic B, Smit J, Madzija O, Sekovanic L (1982) Kinetic study of the transformation of zeolite A into zeolite P. Zeolites 1982 (2): 135–142

    Google Scholar 

  • Tambuyzer E, Bosmans HJ (1976) The crystal structure of synthetic zeolite K-F. Acta Cryst B 32: 1714–1719

    Google Scholar 

  • Tassopoulos M, Thompson RW (1987) Transformation behaviour of zeolite A to hydroxysodalite in batch and semi- batch crystallizers. Zeolites (7): 243–248

  • Yoshida A, Inoue K (1988) Whiteness in zeolite A prepared from Shirasu volcanic glass. Zeolites 1988 (8): 94–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 2 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barth-Wirsching, U., Höller, H., Klammer, D. et al. Synthetic zeolites formed from expanded perlite: Type, formation conditions and properties. Mineralogy and Petrology 48, 275–294 (1993). https://doi.org/10.1007/BF01163104

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01163104

Keywords

Navigation