Skip to main content
Log in

Microstructural characterization of silica aerogels using scanning electron microscopy

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper the experimental results of microstructural characterization of silica aerogels using scanning electron microscopy (SEM) are reported. In order to understand the reasons for shrinkage, opacity and cracking of the aerogels, detailed SEM observations have been made on the aerogels prepared using various molar ratios of precursors, catalysts and solvents; gel ageing periods and supercritical drying conditions. It has been observed that strong acidic catalysed gels resulted in smaller pore and particle sizes, and hence more transparent but readily cracked aerogels; whereas weak-basic catalysed gels gave larger pore and particle sizes, and hence slightly less transparent and monolithic aerogels. Microstructures of very low density (0.05 gm cm−3) gels indicate that the gels form a highly crosslinked polymer network and, then, the spherical particles form on the network at higher aerogel densities. Gel ageing resulted in neck growth between SiO2 particles. Precise control of pore and particle sizes using sol-gel parameters have been found to be necessary in order to obtain highly transparent and monolithic silica aerogels. In addition, autoclave heating and solvent evacuation rates of around 25°Ch−1 and 4 cm3 min−1, respectively, resulted in the best quality silica aerogels in terms of monolithicity and transparency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Pool,Science 247 (1990) 807.

    Google Scholar 

  2. C. A. M. Mulder andJ. G. Van Lierop, in “Proceedings of First International Symposium on Aerogels”, edited by J. Fricke (Springer-Verlag, Berlin, 1986) p. 68.

    Google Scholar 

  3. G. M. Pajonk andC. R. Inova, “Industrie et Innovation (France)”,18 (1976) p. 376.

    Google Scholar 

  4. G. M. Pajonk andS. J. Teichner, in “Proceedings of First International Symposium on Aerogels”, edited by J. Fricke (Springer-Verlag, Berlin, 1986) p. 193.

    Google Scholar 

  5. A. El Tanany andG. M. Pajonk,React. Kinet. Catal. Lett. 41 (1992) 167.

    Google Scholar 

  6. G. M. Pajonk,Appl. Catal. 72 (1991) 217.

    Google Scholar 

  7. J. Fricke andA. Emmerling, “Structure and Bonding 77” (Springer-Verlag, Berlin, 1992) p. 38.

    Google Scholar 

  8. D. W. Cooper,Part. Sci. Technol. 7 (1989) 371.

    Google Scholar 

  9. A. V. Rao, Internal Report AGL-4295 Shivaji University, Kolhapur (1995).

    Google Scholar 

  10. J. L. Rasmussen, in Proceedings of the second International Symposium on Aerogels, Revue de Physique Appliques, Colloque C4, (Les Editions de Phvsique, Les Ulis Cedex, 1989) p. 221.

    Google Scholar 

  11. J. Fricke, M. C. Arduini-Schuster, D. Buttner, H. P. Ebert, U. Heinemann, J. Hetfleisch, E. Hummer, J. Kuhn andX. Lu, 21st International Thermal Conductivity Conference, 15–18 October, 1989, Lexington, KY.

  12. J. Fricke,Phys. in Unserer Zedit. 20 (1989) 189.

    Google Scholar 

  13. M. Cantin, M. Casse, L. Koch, R. Jouan, P. Mestreau, D. Roussel, F. Bonnin, J. Moutel andS. J. Teichner,Nucl. Instrum. Meth. 118 (1974) 177.

    Google Scholar 

  14. M. Bourdinaud, J. B. Cheze andJ. C. Thevenin,ibid. 136 (1976) 99.

    Google Scholar 

  15. P. J. Carlson, K. E. Johansson, J. Kesteman, J. Norsby, O. Pingot, S. Tavernier, F. Van Den Bogaert andL. Van Lancker,ibid. 160 (1979) 407.

    Google Scholar 

  16. M. Gonauer andJ. Fricke,Acustica 59 (1986) 177.

    Google Scholar 

  17. N. K. Kim, D. A. Payne andR. S. Upadhye,J. Vac. Sci. Technol. A7 (1989) 181.

    Google Scholar 

  18. K. Y. Jang, K. Kim andR. S. Upadhye,ibid. A8 (1990) 1732.

    Google Scholar 

  19. K. Kim, K. Y. Jang andR. S. Upadhye,J. Amer. Ceram. Soc. 74 (1991) 1987.

    Google Scholar 

  20. C. S. Ashley, S. T. Reed, C. J. Brinker, R. J. Walco, R. E. Ellefson andJ. T. Gill in “Chemical Processing of Advanced Materials”, edited by L. L. Hench and J. K. West (J Wiley, New York, 1992) p. 989.

    Google Scholar 

  21. S. S. Kistler,Nature 127 (1931) 741.

    Google Scholar 

  22. G. A. Nicolaon andS. J. Teichner,Bull. Soc. Chim. Fr. 5 (1968) 1900.

    Google Scholar 

  23. L. W. Hrubesh,Chem. & Ind. 17 December,26 (1990) 824.

    Google Scholar 

  24. A. V. Rao andN. N. Parvathy,J. Mater. Sci. 28 (1993) 3021.

    Google Scholar 

  25. A. V. Rao, G. M. Pajonk andN. N. Parvathy,ibid. 29 (1994) 1807.

    Google Scholar 

  26. A. V. Rao, G. M. Pajonk andN. N. Parvathy,J. Sol-Gel Sci. Technol. 3 (1994) 205.

    Google Scholar 

  27. G. W. Scherer,J. Non-Cryst. Solids 145 (1992) 33.

    Google Scholar 

  28. P. H. Tewari, A. J. Hunt, J. G. Lieber andK. Lofftus, in “Proceedings of First International Symposium on Aerogels”, edited by J. Fricke (Springer-Verlag, Berlin, 1986) p. 145.

    Google Scholar 

  29. G. Poelz,ibid.in “ p. 177.

    Google Scholar 

  30. E. Duval, A. Boukenter, T. Achibat andB. Champagnon,Phil. Mag. B65 (1992) 181.

    Google Scholar 

  31. J. L. Rousset, A. Boukenter, B. Champagnon, J. Dumas, E. Duval, J. F. Qunson andJ. Serughetti,J. Phys. Condens. Matter 2 (1990) 8445.

    Google Scholar 

  32. R. W. Pekala andC. T. Alviso,Mater. Res. Soc. Symp. Proc. 180 (1990) 791.

    Google Scholar 

  33. L. C. Klein andG. J. Garvey,J. Non-Cryst. Solids 38 & 39 (1980) 45.

    Google Scholar 

  34. C. J. Brinker, K. D. Keefer, D. W. Schaefer, R. A. Assink, B. D. Kay andC. S. Ashley,ibid. 48 (1982) 47.

    Google Scholar 

  35. M. Nogami andY. Moriya,ibid. 37 (1980) 191.

    Google Scholar 

  36. S. Sakka, H. Kozaka andS. Kim, in “Ultrastructure Processing of Advanced Ceramics”, edited by J. D. Mackenzie and D. R. Ulrich (Wiley, New York, 1988) p. 159.

    Google Scholar 

  37. A. E. Scheidegger, “The Physics of Flow Through Porous Media”, 3rd Edn. (University of Toronto Press, 1974) pp. 1–141.

  38. P. M. Adler,Phys. Fluids 29 (1986) 15.

    Google Scholar 

  39. G. W. Scherer andR. W. Swaitek,J. Non-Cryst. Solids 113 (1989) 119.

    Google Scholar 

  40. M. Prassas, J. Phalippou andJ. Zarycki,J. Mater. Sci. 19 (1984) 1656.

    Google Scholar 

  41. R. W. Pekala,ibid. 24 (1989) 3221.

    Google Scholar 

  42. F. J. Broecker, W. Heckmann, F. Fischer, M. Mielke, J. Schroeder andA. Stange, in “Proceedings of the First International Symposium on Aerogels”, edited by J. Fricke (Springer-Verlag, Berlin, 1986) p. 160.

    Google Scholar 

  43. G. W. Scherer, H. Hdach andJ. Phalippou,J. Non-Cryst. Solids 130 (1991) 157.

    Google Scholar 

  44. G. W. Scherer,ibid.,113 (1989) 107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pajonk, G.M., Venkateswara Rao, A., Parvathy, N.N. et al. Microstructural characterization of silica aerogels using scanning electron microscopy. J Mater Sci 31, 5683–5689 (1996). https://doi.org/10.1007/BF01160815

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01160815

Keywords

Navigation