Skip to main content
Log in

Vanadate-sensitive ATPase in the plasmalemma ofAcetabularia: biochemical and kinetic characterization

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The electrogenic Cl-pump in the plasmalemma of the marine algaAcetabularia acetabulum (L.) Silva has been suggested to be an unusual type of ATPase (Gradmann, 1989, Methods Enzymol.174, 490). For a biochemical treatment of this issue, a plasmalemma-rich membrane fraction fromAcetabularia has been prepared by phase-partitioning. About 80% of the ATPase activity in this material is inhibited by vanadate (K I50=1–2 μM). The phosphohydrolytic properties of the corresponding enzyme were further investigated. Its primary substrate MgATP2− (K m about 270 μM). Compared with other plasmalemma ATPases, it has an extremely alkaline pH optimum (pH 8–8.5), a weak sensitivity to diethyl-stilbestrol and to N,N'-dicyclohexylcarbodiimide, a strong selectivity for Mg2+ over alternative divalent cations, and a weak selectivity for ATP over other phosphohydrolytic substrates. It is insensitive to KCl at concentrations up to 200 mM. Both ATP4− and Mg2ATP inhibit the ATPase, satisfying a relationship for competitive inhibition by 2ATP4− (K IATP=1.56 mM) and noncompetitive inhibition by Mg2ATP (K IMg2ATP=1.35 mM). Since no transport experiments are reported in this study, the ion species (H+ or Cl) that is transferred by this ATPase is not identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bis-tris-propane:

1,3-bis[tris(hydroxymethyl)methylaminopropane

DCCD:

N,N'-dicyclohexylcarbodiimide

DES:

diethylstilbestrol

DOC:

sodium deoxycholate

Mes:

2-(N-morpholino)ethanesulfonic acid

PCMBS:

p-chloromercuri-benzenesulfonate

PM:

plasmalemma-enriched membrane fraction

References

  • Albertsson, P.A. (1958) Particle fractionation in liquid two-phase systems. Biochim. Biophys. Acta27, 378–395

    PubMed  Google Scholar 

  • Anthon, G.E., Spanswick, R.M. (1986) Purification and properties of the H+-translocating ATPase from the plasma membrane of tomato roots. Plant Physiol.81, 1080–1085

    Google Scholar 

  • Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase inBeta vulgaris. Plant Physiol.24, 1–15

    Google Scholar 

  • Bennet, A.B., O'Neill, S.D., Eilman, M., Spanswick, R.M. (1985) H+-ATPase activity from storage tissue ofBeta vulgaris. Plant Physiol.79, 495–499

    Google Scholar 

  • Blair, J.McD. (1970) Magnesium, potassium, and the adenylate kinase equilibrium. Eur. J. Biochem.13, 384–390

    PubMed  Google Scholar 

  • Blum, H., Beier, H., Gross, H.J. (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis8, 93–99

    Google Scholar 

  • Bowman, B.J., Bowman, E.J. (1986) H+-ATPases from mitochondria, plasma membranes, and vacuoles of fungal cells. J. Membr. Biol.94, 83–97

    PubMed  Google Scholar 

  • Brüggemann, W., Janiesch, P. (1987) Characterization of plasma membrane H+-ATPase from salt-tolerant and salt-sensitivePlantago species. J. Plant Physiol.130, 395–411

    Google Scholar 

  • Clement, J.-D., Blein, J.-P., Rigaud, J., Scalla, R. (1986) Characterization of ATPase from maize shoot plasma membrane prepared by partition in an aqueous polymer two phase system. Physiol. Veg.24, 25–35

    Google Scholar 

  • DuPont, F.M., Burke, L.L., Spanswick, R.M. (1981) Characterization of a partially purified adenosine triphosphatase from corn root plasma membrane fractions. Plant Physiol.67, 59–63

    Google Scholar 

  • Gerencser, G.A., White, J.F., Gradmann, D., Bonting, S. (1988) Is there a Cl pump? Am. J. Physiol.255, R677-R692

    PubMed  Google Scholar 

  • Goldfarb, V., Gradmann, D. (1983) ATPase activities in partially purified membranes ofAcetabularia. Plant Cell Rep.2, 152–155

    Google Scholar 

  • Goldfarb, V., Sanders, D., Gradmann, D. (1984) Reversal of electrogenic Cl pump inAcetabularia increases level and32P labelling of ATP. J. Exp. Bot.35, 645–658

    Google Scholar 

  • Gradmann, D. (1989) ATP-driven chloride pump in giant algaAcetabularia. Methods Enzymol.174, 490–504

    Google Scholar 

  • Graves, J.S., Gutknecht, J. (1977a) Chloride transport and the membrane potential in the marine algaHalicystis parvula. J. Membr. Biol.36, 65–81

    Google Scholar 

  • Graves, J.S., Gutknecht, J. (1977b) Current-voltage relationships and voltage sensitivity of the Cl pump inHalicystis parvula. J. Membr. Biol.36, 83–95

    Google Scholar 

  • Hämmerling, J. (1963) Nucleo-cytoplasmic interactions inAcetabularia and other cells. Annu. Rev. Plant Physiol.14, 65–92

    Google Scholar 

  • Hexum, T., Samson, F.E., Himes, R.H. (1970) Kinetic studies of membrane (Na+-K+-Mg2+)-ATPase. Biochim. Biophys. Acta212, 322–331

    PubMed  Google Scholar 

  • Hill, B.S., Hill, A.E. (1973) ATP-driven chloride-ATPase fromLimonium salt gland. J. Membr. Biol.12, 147–158

    Google Scholar 

  • Hodges, T.K., Mills, D. (1986) Isolation of the plasma membrane. Methods Enzymol.118, 41–54

    Google Scholar 

  • Huang, L., Berry, E.A. (1990) Purification and characterization of the proton translocating plasma membrane ATPase of red beet storage tissue. Biochim. Biophys. Acta1039, 241–252

    PubMed  Google Scholar 

  • Ikeda, M., Oesterhelt, D. (1990) A Cl-translocating adenosinetriphosphatase inAcetabularia acetabulum. 2. Reconstitution of the enzyme into liposomes and effect of net charges of liposomes on chloride permeability and reconstitution. Biochemistry29, 2065–2070

    PubMed  Google Scholar 

  • Ikeda, M., Schmid, R., Oesterhelt, D. (1990) A Cl-translocating adenosinetriphosphatase inAcetabularia acetabulum. 1. Purification and characterization of a novel type of adenosinetriphosphatase that differs from chloroplast F1 adenosinetriphos-phatase. Biochemistry29, 2057–2065

    PubMed  Google Scholar 

  • Kasai, M., Muto, S. (1990) Ca2+ pump and Ca2+/H+ antiporter in plasma membrane vesicles isolated by aqueous two-phase partitioning from corn leaves. J. Membr. Biol.114, 133–142

    PubMed  Google Scholar 

  • Kasamo, K. (1987) Reconstitution and characterization of H+-translocating ATPase from the plasma membrane ofPhaseolus mungo L. roots. Plant Cell Physiol.28, 19–28

    Google Scholar 

  • Koland, J.G., Hammes, G.G. (1986) Steady state kinetic studies of purified yeast plasma membrane proton-translocating ATPase. J. Biol. Chem.261, 5936–5942

    PubMed  Google Scholar 

  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227, 680–685

    PubMed  Google Scholar 

  • Lanzetta, P.A., Alvarez, L.J., Reinach, P.S., Candia, O.A. (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem.100, 95–97

    PubMed  Google Scholar 

  • Miwa, T., Iriki, Y., Suzuki, T. (1961) Mannan and xylan as essential cell wall constituents of some siphonous green algae. Coll. Int. Centre Nat. Rech. Sci.103, 113–144

    Google Scholar 

  • Nagao, T., Sasakawa, H., Sugiyama, T. (1987) Purification of a H+-ATPase from the plasma membrane of maize roots and preparation of its antibody. Plant Cell Physiol.28, 1181–1186

    Google Scholar 

  • Noat, G., Ricard, J., Borel, M., Got, C. (1970) Kinetic study of yeast hexokinase: Inhibition of the reaction by magnesium and ATP. Eur. J. Biochem.13, 347–363

    PubMed  Google Scholar 

  • O'Neill, S.D., Spanswick, R.M. (1984) Characterization of native and reconstituted plasma membrane H+-ATPase from the plasma membrane ofBeta vulgaris. J. Membr. Biol.79, 245–256

    Google Scholar 

  • O'Sullivan, W.J., Perrin, D.D. (1964) The stability constants of metal-adenine nucleotide complexes. Biochemistry3, 18–26

    Google Scholar 

  • Parr, A.J., Hanke, D.E. (1982) ‘Chloride-stimulated ATPase’ activity inLimonium vulgare Mill. Phil. Trans. R. Soc. Lond.B299, 459–468

    Google Scholar 

  • Pedersen, P.L., Carafoli, E. (1987) Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. TIBS12, 146–150

    Google Scholar 

  • Peterson, G.L. (1977) A simplification of the protein assay method of LOWRY et al. which is more generally applicable. Anal. Biochem.83, 346–356

    PubMed  Google Scholar 

  • Raven, J.A. (1989) Transport systems in algae and bryophytes: An overview. Methods Enzymol.174, 366–390

    Google Scholar 

  • Robinson, J.D. (1974) Nucleotide and divalent cation interactions with the (Na+-K+)-dependent ATPase. Biochim. Biophys. Acta341, 232–247

    PubMed  Google Scholar 

  • Saddler, H.D.W. (1970) The ionic relations ofAcetabularia mediterranea. J. Exp. Bot.21, 345–359

    Google Scholar 

  • Schmid, R., Gieseke, R. (1985) Large scale culture ofAcetabularia. In:Acetabularia 1984, pp. 319–325, Bonotto, S., Cinelli, F., Billiau, R., eds. Belgian Nuclear Center, Mol

    Google Scholar 

  • Schweiger, H.-G., Dehm, P., Berger, S. (1977) Culture conditions forAcetabularia. In: Progress inAcetabularia research, pp. 319–330, Woodcock, C.L.F., ed. Academic press, New York

    Google Scholar 

  • Sekler, I., Gläser, H.-U., Pick, U. (1991) Characterization of a plasma membrane H+-ATPase from the extremely acidophilic algaDunaliella acidophila. J. Membr. Biol.121, 51–57

    PubMed  Google Scholar 

  • Serrano, R. (1984) Plasma membrane ATPase of fungi and plants as a novel type of proton pump. Curr. Top. Cell. Regul.23, 87–126

    PubMed  Google Scholar 

  • Sillén, L.G., Martell, A.E. (1971) Stability constants of metal-ion complexes. The Chemical Society, Special Publications 25, Suppl. No. 1., London

  • Smahel, M. (1990) Spezielle ATPasen ausAcetabularia. Ph. D. Thesis University Göttingen, FRG

    Google Scholar 

  • Smahel, M., Hamann, A., Gradmann, D. (1990) The prime plasmalemma ATPase of the halophilic algaDunaliella bioculata: Purification and characterization. Planta181, 496–504

    Google Scholar 

  • Spanswick, R.M. (1989) Vacuolar and cell membrane H+-ATPases of plant cells. Ann. N. Y. Acad. Sci.574, 180–188

    PubMed  Google Scholar 

  • Storer, A.C., Cornish-Bowden, A. (1976) Concentration of MgATP2− and other ions in solution: Calculation of the true concentrations of species present in mixtures of associating ions. Biochem. J.159, 1–5

    PubMed  Google Scholar 

  • Sze, H. (1984) H+-translocating ATPases of the plasma membrane and tonoplast of plant cells. Physiol. Plant.61, 683–691

    Google Scholar 

  • Sze, H. (1985) H+-translocating ATPases: Advances using membrane vesicles. Annu. Rev. Plant Physiol.36, 175–208

    Google Scholar 

  • Thom, M., Komor, E. (1984a) Role of the ATPase of sugar-cane vacuoles in energization of the tonoplast. Eur. J. Biochem.138, 93–99

    PubMed  Google Scholar 

  • Thom, M., Komor, E. (1984b) Effect of magnesium and ATP on ATPase of sugarcane vacuoles. Planta161, 361–365

    Google Scholar 

  • Vara, F., Serrano, R. (1982) Partial purification and properties of the proton-translocating ATPase of plant plasma membranes. J. Biol. Chem.257, 12826–12830

    PubMed  Google Scholar 

  • Widell, S., Lundborg, T., Larsson, C. (1982) Plasma membranes from oats prepared by partition in an aqueous polymer two-phase system. Plant Physiol.70, 1429–1435

    Google Scholar 

  • Williams, L.E., Hall, J.L. (1989) ATPase and proton translocating activities in a plasma membrane-enriched fraction from cotyledons ofRicinus communis. J. Exp. Bot.40, 1205–1213

    Google Scholar 

  • Yoshida, S., Uemura, M., Niki, T., Sakai, A., Gusta, L.V. (1983) Partition of membrane particles in aqueous two-polymer phase system and its practical use for purification of plasma membranes from plants. Plant Physiol.72, 105–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft. We thank Mrs. Hanna Bork for culturingAcetabularia and Dr. Gerhard Thiel for critical reading of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smahel, M., Klieber, HG. & Gradmann, D. Vanadate-sensitive ATPase in the plasmalemma ofAcetabularia: biochemical and kinetic characterization. Planta 188, 62–69 (1992). https://doi.org/10.1007/BF01160713

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01160713

Key words

Navigation